counts_parameters.py 3.31 KB
Newer Older
Victor SANH's avatar
Victor SANH committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Copyright 2020-present, the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Count remaining (non-zero) weights in the encoder (i.e. the transformer layers).
Sparsity and remaining weights levels are equivalent: sparsity % = 100 - remaining weights %.
"""
import argparse
Victor SANH's avatar
Victor SANH committed
19
import os
Victor SANH's avatar
Victor SANH committed
20
21
22

import torch

Victor SANH's avatar
Victor SANH committed
23
from emmental.modules import ThresholdBinarizer, TopKBinarizer
Victor SANH's avatar
Victor SANH committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69


def main(args):
    serialization_dir = args.serialization_dir
    pruning_method = args.pruning_method
    threshold = args.threshold

    st = torch.load(os.path.join(serialization_dir, "pytorch_model.bin"), map_location="cpu")

    remaining_count = 0  # Number of remaining (not pruned) params in the encoder
    encoder_count = 0  # Number of params in the encoder

    print("name".ljust(60, " "), "Remaining Weights %", "Remaning Weight")
    for name, param in st.items():
        if "encoder" not in name:
            continue

        if "mask_scores" in name:
            if pruning_method == "topK":
                mask_ones = TopKBinarizer.apply(param, threshold).sum().item()
            elif pruning_method == "sigmoied_threshold":
                mask_ones = ThresholdBinarizer.apply(param, threshold, True).sum().item()
            elif pruning_method == "l0":
                l, r = -0.1, 1.1
                s = torch.sigmoid(param)
                s_bar = s * (r - l) + l
                mask = s_bar.clamp(min=0.0, max=1.0)
                mask_ones = (mask > 0.0).sum().item()
            else:
                raise ValueError("Unknown pruning method")
            remaining_count += mask_ones
            print(name.ljust(60, " "), str(round(100 * mask_ones / param.numel(), 3)).ljust(20, " "), str(mask_ones))
        else:
            encoder_count += param.numel()
            if "bias" in name or "LayerNorm" in name:
                remaining_count += param.numel()

    print("")
    print("Remaining Weights (global) %: ", 100 * remaining_count / encoder_count)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--pruning_method",
Victor SANH's avatar
Victor SANH committed
70
        choices=["l0", "topK", "sigmoied_threshold"],
Victor SANH's avatar
Victor SANH committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
        type=str,
        required=True,
        help="Pruning Method (l0 = L0 regularization, topK = Movement pruning, sigmoied_threshold = Soft movement pruning)",
    )
    parser.add_argument(
        "--threshold",
        type=float,
        required=False,
        help="For `topK`, it is the level of remaining weights (in %) in the fine-pruned model."
        "For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared."
        "Not needed for `l0`",
    )
    parser.add_argument(
        "--serialization_dir",
        type=str,
        required=True,
        help="Folder containing the model that was previously fine-pruned",
    )

    args = parser.parse_args()

    main(args)