fx.py 14.2 KB
Newer Older
1
2
import copy
import functools
3
import inspect
4
from typing import Any, Dict, List, Optional, Union
5
6

import torch
7
from packaging import version
8
from torch import nn
9
10
11
from torch.fx import Graph, GraphModule, Node, Proxy, Tracer
from torch.fx.node import Argument

12
13
from transformers.file_utils import TORCH_FX_REQUIRED_VERSION, importlib_metadata, is_torch_fx_available

14
from .. import (
15
16
17
18
19
20
21
22
23
24
25
26
27
28
    MODEL_FOR_CAUSAL_LM_MAPPING,
    MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
    MODEL_FOR_MASKED_LM_MAPPING,
    MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
    MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
    MODEL_FOR_PRETRAINING_MAPPING,
    MODEL_FOR_QUESTION_ANSWERING_MAPPING,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
    MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
    MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
    GPT2DoubleHeadsModel,
    PreTrainedModel,
    logging,
)
29
from ..models.auto import get_values
30
31
32


logger = logging.get_logger(__name__)
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58


class HFProxy(Proxy):
    """
    Proxy that is able to provide the proper ranks, shapes and boolean values during symbolic tracing by implementing
    the dim, size and __bool__ methods. It can be easily extended by either adding new methods or extending the
    existing ones.
    """

    def __init__(self, node: Node, tracer: Optional[Tracer] = None):
        super().__init__(node, tracer=tracer)
        if hasattr(self, "tracer") and self.tracer is not None:
            self.device = self.tracer.root.device
            self.dtype = next(self.tracer.root.parameters()).dtype

    @property
    def shape(self):
        return self.size()

    def __setitem__(self, key, value):
        pass

    def __contains__(self, key):
        return False


59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
def _wrap_method_for_model_recording(model, method_name, cache_name):
    """Helper function that wraps a torch.Tensor method to record its outputs during forward pass."""
    method = getattr(torch.Tensor, method_name)

    @functools.wraps(method)
    def wrapped(*args, **kwargs):
        if not hasattr(model, cache_name):
            setattr(model, cache_name, [])
        cache = getattr(model, cache_name)
        res = method(*args, **kwargs)
        cache.append(res)
        return res

    return wrapped


def _create_recorded_proxy_method(proxy, method_name, cache_name):
    """
    Helper function that sets a recorded torch.Tensor method as a HFProxy method that will use the recorded values
    during symbolic tracing.
    """

    def method(self, *args, **kwargs):
        cache = getattr(self.tracer.root, cache_name)
        res = cache.pop(0)
        return res

    method.__name__ = method_name
    bound_method = method.__get__(proxy, proxy.__class__)
    setattr(proxy, method_name, bound_method)


def _wrap_method_for_model_tracing(model, method_name, cache_name):
    """
    Helper function that sets a recorded torch.Tensor method as a torch.Tensor method that will use the recorded values
    during symbolic tracing.
    """

    original_method = getattr(torch.Tensor, method_name)

    @functools.wraps(original_method)
    def method(*args, **kwargs):
        cache = getattr(model, cache_name)
        res = cache.pop(0)
        return res

    setattr(torch.Tensor, method_name, method)

    if method_name == "size":
        setattr(torch.Tensor, "shape", property(getattr(torch.Tensor, method_name)))


def _monkey_patch_tensor_methods_for_model_recording(model, method_names):
    """
    Helper function that patches torch.Tensor methods (specified by the method_names list) to record model inference
    before symbolic tracing.
    """
    cache_names = dict()
    original_methods = dict()
    for method_name in method_names:
        cache_name = f"cache_{method_name}"
        cache_names[method_name] = cache_name
        if not hasattr(torch.Tensor, method_name):
            logger.info(f"torch.Tensor has no method called {method_name}, skipping patching.")
            continue
        original_methods[method_name] = getattr(torch.Tensor, method_name)
        setattr(torch.Tensor, method_name, _wrap_method_for_model_recording(model, method_name, cache_name))

        if method_name == "size":
            original_methods["shape"] = torch.Tensor.shape
            setattr(torch.Tensor, "shape", property(getattr(torch.Tensor, method_name)))

    return cache_names, original_methods


def _reset_tensor_methods(original_methods):
    """Helper function that resets the monkey patched torch.Tensor methods to their original values."""
    for name, method in original_methods.items():
        setattr(torch.Tensor, name, method)


140
141
class HFTracer(Tracer):
    """
142
143
    Tracer that is able to symbolically trace models from the library. To do that, it uses the HFProxy instead of the
    regular PyTorch torch.fx.Proxy.
144
145
    """

146
147
    default_methods_to_record = {"__bool__", "size", "dim"}

148
149
    def __init__(self, batch_size=1, sequence_length=[128, 128], num_choices=-1):
        super().__init__()
150
151
152
153
154
155
156
157

        if not is_torch_fx_available():
            torch_version = version.parse(importlib_metadata.version("torch"))
            raise ImportError(
                f"Found an incompatible version of torch. Found version {torch_version}, but only version "
                f"{TORCH_FX_REQUIRED_VERSION} is supported."
            )

158
        encoder_sequence_length = sequence_length[0] if isinstance(sequence_length, (list, tuple)) else sequence_length
159
160
161
        decoder_sequence_length = (
            sequence_length[1] if isinstance(sequence_length, (list, tuple)) else encoder_sequence_length
        )
162
163
164
165
166
167
        self.encoder_shape = [batch_size, encoder_sequence_length]
        self.decoder_shape = (
            [batch_size, decoder_sequence_length] if decoder_sequence_length > 0 else list(self.encoder_shape)
        )
        self.num_choices = num_choices
        if self.num_choices > 0:
168
169
            self.encoder_shape = [batch_size, self.num_choices, encoder_sequence_length]
            self.decoder_shape = [batch_size, self.num_choices, decoder_sequence_length]
170
171

        self.prev_module = None
172
        self.recorded_methods = None
173
174

    def proxy(self, node: Node):
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
        p = HFProxy(node, self)
        if self.recorded_methods:
            for method_name, cache_name in self.recorded_methods.items():
                _create_recorded_proxy_method(p, method_name, cache_name)
        return p

    def _generate_dummy_input(self, model, input_name):
        """Generates dummy input for model inference recording."""
        model_class = model.__class__
        device = model.device
        inputs_dict = dict()

        if input_name in ["labels", "start_positions", "end_positions"]:
            batch_size = self.encoder_shape[0]
            if model_class in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
                inputs_dict["labels"] = torch.ones(batch_size, dtype=torch.long, device=device)
            elif model_class in get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING):
                inputs_dict["start_positions"] = torch.zeros(batch_size, dtype=torch.long, device=device)
                inputs_dict["end_positions"] = torch.zeros(batch_size, dtype=torch.long, device=device)
            elif model_class in [
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING),
                *get_values(MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING),
            ]:
                inputs_dict["labels"] = torch.zeros(batch_size, dtype=torch.long, device=device)
            elif model_class in [
                *get_values(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING),
                *get_values(MODEL_FOR_CAUSAL_LM_MAPPING),
                *get_values(MODEL_FOR_MASKED_LM_MAPPING),
                *get_values(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING),
                GPT2DoubleHeadsModel,
            ]:
                inputs_dict["labels"] = torch.zeros(self.decoder_shape, dtype=torch.long, device=device)
            elif model_class in get_values(MODEL_FOR_PRETRAINING_MAPPING):
                inputs_dict["labels"] = torch.zeros(self.encoder_shape, dtype=torch.long, device=device)
            else:
                raise NotImplementedError(f"{model_class} not supported yet.")

        elif "mask" in input_name or "ids" in input_name:
            shape = self.encoder_shape if "decoder" not in input_name else self.decoder_shape
            inputs_dict[input_name] = torch.ones(shape, dtype=torch.long, device=device)
        else:
            shape = self.encoder_shape if "decoder" not in input_name else self.decoder_shape
            shape += [model.config.hidden_size]
            inputs_dict[input_name] = torch.ones(shape, dtype=torch.float, device=device)

        return inputs_dict

    def record(self, model, input_names, method_names=None):
        """
        Records torch.Tensor method outputs (specified by the method_names list) that will then be used during symbolic
        tracing.
        """
        if method_names is None:
            method_names = self.default_methods_to_record

        inputs = dict()
        for input_name in input_names:
            inputs.update(self._generate_dummy_input(model, input_name))

        clone = copy.deepcopy(model)
        cache_names, original_methods = _monkey_patch_tensor_methods_for_model_recording(clone, method_names)
        self.original_methods = original_methods

        clone(**inputs)

241
242
243
244
        # Useful because sometime the config is changed at inference time, for instance for
        # classification tasks where config.problem_type can be set.
        model.config = clone.config

245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
        _reset_tensor_methods(original_methods)

        self.recorded_methods = {
            method_name: cache_name for method_name, cache_name in cache_names.items() if hasattr(clone, cache_name)
        }

        for cache_name in self.recorded_methods.values():
            setattr(model, cache_name, getattr(clone, cache_name))

    def trace(self, root: PreTrainedModel, concrete_args: Optional[Dict[str, Any]] = None, method_names=None) -> Graph:
        sig = inspect.signature(root.forward)
        input_names = sig.parameters.keys() - concrete_args.keys()

        self.record(root, input_names, method_names=method_names)

        for method_name, cache_name in self.recorded_methods.items():
            _wrap_method_for_model_tracing(root, method_name, cache_name)

        graph = super().trace(root, concrete_args=concrete_args)

        _reset_tensor_methods(self.original_methods)

        return graph
268
269
270
271
272

    def _insert_module_as_submodule(self, mod):
        """
        Helper method which tries to insert a module that was not declared as submodule.
        """
273
274
275
276
277
278
279
280
        idx = 0
        mod_name = mod.__class__.__name__.lower()
        path = f"{mod_name}_{idx}"
        while hasattr(self.root, path):
            path = f"{mod_name}_{idx}"
            idx += 1

        self.root.add_module(path, mod)
281
282
        return path

283
    def path_of_module(self, mod: nn.Module) -> str:
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
        """
        Helper method to find the qualified name of ``mod`` in the Module hierarchy of ``root``. For example, if
        ``root`` has a submodule named ``foo``, which has a submodule named ``bar``, passing ``bar`` into this function
        will return the string "foo.bar".

        Args:
            mod (str): The ``Module`` to retrieve the qualified name for.
        """
        # Prefer the O(1) algorithm
        if hasattr(self, "submodule_paths") and self.submodule_paths:
            path = self.submodule_paths.get(mod)
            if path is None:
                path = self._insert_module_as_submodule(mod)
            if path is None:
                raise NameError("module is not installed as a submodule")
            self.prev_module = path
            return path

        # O(N^2) fallback in the case that we didn't store the submodule
        # paths.
        else:
            for n, p in self.root.named_modules():
                if mod is p:
                    self.prev_module = n
                    return n
            path = self._insert_module_as_submodule(mod)
            if path is None:
                raise NameError("module is not installed as a submodule")
            self.prev_module = path
            return path

315
316
317
318
319
    def create_arg(self, a: Any) -> Argument:
        if isinstance(a, range):
            return super().create_arg(list(a))
        return super().create_arg(a)

320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350

def symbolic_trace(
    model: PreTrainedModel,
    input_names: Optional[List[str]] = None,
    batch_size: int = 1,
    sequence_length: Union[int, List[int]] = [128, 128],
    num_choices: int = -1,
) -> GraphModule:

    """
    Performs symbolic tracing on the model.

    Args:
        model (:obj:`PretrainedModel`):
            The model to trace.
        input_names (:obj:`List[str]`, `optional`):
            The names of the inputs of the traced model. If unset, model.dummy_inputs().keys() are used instead.
        batch_size (:obj:`int`, `optional`, defaults to 1):
            The batch size of the traced model inputs.
        sequence_length (:obj:`int` or :obj:`List[int]]`):
            The sequence length of the traced model inputs. For sequence-to-sequence models with different sequence
            lengths between the encoder and the decoder inputs, this must be :obj:`[encoder_sequence_length,
            decoder_sequence_length]`.
        num_choices (:obj:`int`, `optional`, defaults to -1):
            The number of possible choices for a multiple choice task.

    Returns:
        :obj:`torch.fx.GraphModule`: A GraphModule constructed by recording operations seen while tracing the model.

    Example::

351
        from transformers.utils.fx import symbolic_trace
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
        traced_model = symbolic_trace(
            model,
            input_names=["input_ids", "attention_mask", "token_type_ids"],
            batch_size=1,
            sequence_length=128,
        )
    """
    if input_names is None:
        input_names = model.dummy_inputs.keys()

    sig = inspect.signature(model.forward)
    # TODO: how to handle the case of the "return_dict" parameter.
    concrete_args = {p.name: p.default for p in sig.parameters.values() if p.name not in input_names}

    tracer = HFTracer(batch_size=batch_size, sequence_length=sequence_length, num_choices=num_choices)
367

368
369
370
371
    traced_graph = tracer.trace(model, concrete_args=concrete_args)
    traced = torch.fx.GraphModule(model, traced_graph)

    return traced