run_ner.py 18 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2020 The HuggingFace Team All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15
16
17
"""
Fine-tuning the library models for token classification.
"""
Sylvain Gugger's avatar
Sylvain Gugger committed
18
19
# You can also adapt this script on your own token classification task and datasets. Pointers for this are left as
# comments.
20

21
22
import logging
import os
23
import sys
Julien Chaumond's avatar
Julien Chaumond committed
24
from dataclasses import dataclass, field
25
from typing import Optional
26
27

import numpy as np
28
from datasets import ClassLabel, load_dataset, load_metric
Aymeric Augustin's avatar
Aymeric Augustin committed
29

30
import transformers
Aymeric Augustin's avatar
Aymeric Augustin committed
31
from transformers import (
32
33
34
    AutoConfig,
    AutoModelForTokenClassification,
    AutoTokenizer,
35
    DataCollatorForTokenClassification,
Julien Chaumond's avatar
Julien Chaumond committed
36
    HfArgumentParser,
37
    PreTrainedTokenizerFast,
Julien Chaumond's avatar
Julien Chaumond committed
38
39
40
    Trainer,
    TrainingArguments,
    set_seed,
Aymeric Augustin's avatar
Aymeric Augustin committed
41
)
42
from transformers.trainer_utils import is_main_process
Aymeric Augustin's avatar
Aymeric Augustin committed
43
44


45
46
47
logger = logging.getLogger(__name__)


Julien Chaumond's avatar
Julien Chaumond committed
48
49
50
51
52
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """
53

Julien Chaumond's avatar
Julien Chaumond committed
54
55
    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
56
    )
Julien Chaumond's avatar
Julien Chaumond committed
57
58
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
59
    )
Julien Chaumond's avatar
Julien Chaumond committed
60
61
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
62
    )
Julien Chaumond's avatar
Julien Chaumond committed
63
    cache_dir: Optional[str] = field(
64
65
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
66
    )
67
68
69
70
71
72
73
74
75
76
77
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
            "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
            "with private models)."
        },
    )
78
79


Julien Chaumond's avatar
Julien Chaumond committed
80
81
82
83
84
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """
85

86
87
88
89
90
91
    task_name: Optional[str] = field(default="ner", metadata={"help": "The name of the task (ner, pos...)."})
    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
92
    )
93
94
95
96
    train_file: Optional[str] = field(
        default=None, metadata={"help": "The input training data file (a csv or JSON file)."}
    )
    validation_file: Optional[str] = field(
97
        default=None,
98
        metadata={"help": "An optional input evaluation data file to evaluate on (a csv or JSON file)."},
99
    )
100
101
102
    test_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input test data file to predict on (a csv or JSON file)."},
103
    )
Julien Chaumond's avatar
Julien Chaumond committed
104
105
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
106
    )
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    pad_to_max_length: bool = field(
        default=False,
        metadata={
            "help": "Whether to pad all samples to model maximum sentence length. "
            "If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
            "efficient on GPU but very bad for TPU."
        },
    )
    label_all_tokens: bool = field(
        default=False,
        metadata={
            "help": "Whether to put the label for one word on all tokens of generated by that word or just on the "
            "one (in which case the other tokens will have a padding index)."
        },
    )
126
127
128
129
    return_entity_level_metrics: bool = field(
        default=False,
        metadata={"help": "Whether to return all the entity levels during evaluation or just the overall ones."},
    )
130
131
132
133
134
135
136
137
138
139
140
141

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
        self.task_name = self.task_name.lower()
142

Julien Chaumond's avatar
Julien Chaumond committed
143
144
145
146
147
148
149

def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
150
151
152
153
154
155
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()
156

157
    if (
Julien Chaumond's avatar
Julien Chaumond committed
158
159
160
161
        os.path.exists(training_args.output_dir)
        and os.listdir(training_args.output_dir)
        and training_args.do_train
        and not training_args.overwrite_output_dir
162
    ):
163
        raise ValueError(
164
165
            f"Output directory ({training_args.output_dir}) already exists and is not empty."
            "Use --overwrite_output_dir to overcome."
166
167
        )

168
    # Setup logging
169
170
171
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
172
        level=logging.INFO if is_main_process(training_args.local_rank) else logging.WARN,
173
    )
174
175

    # Log on each process the small summary:
176
    logger.warning(
177
178
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
179
    )
180
181
182
    # Set the verbosity to info of the Transformers logger (on main process only):
    if is_main_process(training_args.local_rank):
        transformers.utils.logging.set_verbosity_info()
183
184
        transformers.utils.logging.enable_default_handler()
        transformers.utils.logging.enable_explicit_format()
Julien Chaumond's avatar
Julien Chaumond committed
185
    logger.info("Training/evaluation parameters %s", training_args)
186

187
    # Set seed before initializing model.
Julien Chaumond's avatar
Julien Chaumond committed
188
    set_seed(training_args.seed)
189

190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name)
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
        extension = data_args.train_file.split(".")[-1]
        datasets = load_dataset(extension, data_files=data_files)
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    if training_args.do_train:
        column_names = datasets["train"].column_names
Sylvain Gugger's avatar
Sylvain Gugger committed
217
        features = datasets["train"].features
218
219
    else:
        column_names = datasets["validation"].column_names
Sylvain Gugger's avatar
Sylvain Gugger committed
220
221
222
223
224
        features = datasets["validation"].features
    text_column_name = "tokens" if "tokens" in column_names else column_names[0]
    label_column_name = (
        f"{data_args.task_name}_tags" if f"{data_args.task_name}_tags" in column_names else column_names[1]
    )
225

Sylvain Gugger's avatar
Sylvain Gugger committed
226
227
    # In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the
    # unique labels.
228
229
230
231
232
233
234
235
    def get_label_list(labels):
        unique_labels = set()
        for label in labels:
            unique_labels = unique_labels | set(label)
        label_list = list(unique_labels)
        label_list.sort()
        return label_list

Sylvain Gugger's avatar
Sylvain Gugger committed
236
237
238
239
240
241
242
    if isinstance(features[label_column_name].feature, ClassLabel):
        label_list = features[label_column_name].feature.names
        # No need to convert the labels since they are already ints.
        label_to_id = {i: i for i in range(len(label_list))}
    else:
        label_list = get_label_list(datasets["train"][label_column_name])
        label_to_id = {l: i for i, l in enumerate(label_list)}
243
    num_labels = len(label_list)
244
245

    # Load pretrained model and tokenizer
Julien Chaumond's avatar
Julien Chaumond committed
246
247
248
249
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
250
    config = AutoConfig.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
251
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
252
        num_labels=num_labels,
253
        finetuning_task=data_args.task_name,
Julien Chaumond's avatar
Julien Chaumond committed
254
        cache_dir=model_args.cache_dir,
255
256
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
257
    )
258
    tokenizer = AutoTokenizer.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
259
260
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
261
        use_fast=True,
262
263
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
264
    )
265
    model = AutoModelForTokenClassification.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
266
267
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
268
        config=config,
Julien Chaumond's avatar
Julien Chaumond committed
269
        cache_dir=model_args.cache_dir,
270
271
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
272
    )
273

274
275
276
277
278
279
280
281
    # Tokenizer check: this script requires a fast tokenizer.
    if not isinstance(tokenizer, PreTrainedTokenizerFast):
        raise ValueError(
            "This example script only works for models that have a fast tokenizer. Checkout the big table of models "
            "at https://huggingface.co/transformers/index.html#bigtable to find the model types that meet this "
            "requirement"
        )

282
283
284
285
286
287
288
289
290
291
292
293
    # Preprocessing the dataset
    # Padding strategy
    padding = "max_length" if data_args.pad_to_max_length else False

    # Tokenize all texts and align the labels with them.
    def tokenize_and_align_labels(examples):
        tokenized_inputs = tokenizer(
            examples[text_column_name],
            padding=padding,
            truncation=True,
            # We use this argument because the texts in our dataset are lists of words (with a label for each word).
            is_split_into_words=True,
Julien Chaumond's avatar
Julien Chaumond committed
294
        )
295
        labels = []
296
297
298
        for i, label in enumerate(examples[label_column_name]):
            word_ids = tokenized_inputs.word_ids(batch_index=i)
            previous_word_idx = None
299
            label_ids = []
300
301
302
303
            for word_idx in word_ids:
                # Special tokens have a word id that is None. We set the label to -100 so they are automatically
                # ignored in the loss function.
                if word_idx is None:
304
                    label_ids.append(-100)
305
306
307
                # We set the label for the first token of each word.
                elif word_idx != previous_word_idx:
                    label_ids.append(label_to_id[label[word_idx]])
308
309
310
                # For the other tokens in a word, we set the label to either the current label or -100, depending on
                # the label_all_tokens flag.
                else:
311
312
                    label_ids.append(label_to_id[label[word_idx]] if data_args.label_all_tokens else -100)
                previous_word_idx = word_idx
313
314
315
316
317
318
319
320
321
322

            labels.append(label_ids)
        tokenized_inputs["labels"] = labels
        return tokenized_inputs

    tokenized_datasets = datasets.map(
        tokenize_and_align_labels,
        batched=True,
        num_proc=data_args.preprocessing_num_workers,
        load_from_cache_file=not data_args.overwrite_cache,
Julien Chaumond's avatar
Julien Chaumond committed
323
324
    )

325
326
    # Data collator
    data_collator = DataCollatorForTokenClassification(tokenizer)
Julien Chaumond's avatar
Julien Chaumond committed
327

328
    # Metrics
329
330
    metric = load_metric("seqeval")

331
332
333
    def compute_metrics(p):
        predictions, labels = p
        predictions = np.argmax(predictions, axis=2)
Julien Chaumond's avatar
Julien Chaumond committed
334

335
336
337
338
339
340
341
342
343
        # Remove ignored index (special tokens)
        true_predictions = [
            [label_list[p] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
        true_labels = [
            [label_list[l] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
Julien Chaumond's avatar
Julien Chaumond committed
344

345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
        results = metric.compute(predictions=true_predictions, references=true_labels)
        if data_args.return_entity_level_metrics:
            # Unpack nested dictionaries
            final_results = {}
            for key, value in results.items():
                if isinstance(value, dict):
                    for n, v in value.items():
                        final_results[f"{key}_{n}"] = v
                else:
                    final_results[key] = value
            return final_results
        else:
            return {
                "precision": results["overall_precision"],
                "recall": results["overall_recall"],
                "f1": results["overall_f1"],
                "accuracy": results["overall_accuracy"],
            }
Julien Chaumond's avatar
Julien Chaumond committed
363
364
365
366
367

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
368
369
370
371
        train_dataset=tokenized_datasets["train"] if training_args.do_train else None,
        eval_dataset=tokenized_datasets["validation"] if training_args.do_eval else None,
        tokenizer=tokenizer,
        data_collator=data_collator,
Julien Chaumond's avatar
Julien Chaumond committed
372
373
        compute_metrics=compute_metrics,
    )
374
375

    # Training
Julien Chaumond's avatar
Julien Chaumond committed
376
    if training_args.do_train:
377
        train_result = trainer.train(
Julien Chaumond's avatar
Julien Chaumond committed
378
379
            model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None
        )
380
        trainer.save_model()  # Saves the tokenizer too for easy upload
381

382
383
384
385
386
387
388
389
390
391
392
        output_train_file = os.path.join(training_args.output_dir, "train_results.txt")
        if trainer.is_world_process_zero():
            with open(output_train_file, "w") as writer:
                logger.info("***** Train results *****")
                for key, value in sorted(train_result.metrics.items()):
                    logger.info(f"  {key} = {value}")
                    writer.write(f"{key} = {value}\n")

            # Need to save the state, since Trainer.save_model saves only the tokenizer with the model
            trainer.state.save_to_json(os.path.join(training_args.output_dir, "trainer_state.json"))

393
394
    # Evaluation
    results = {}
395
    if training_args.do_eval:
Julien Chaumond's avatar
Julien Chaumond committed
396
397
        logger.info("*** Evaluate ***")

398
        results = trainer.evaluate()
Julien Chaumond's avatar
Julien Chaumond committed
399

400
401
        output_eval_file = os.path.join(training_args.output_dir, "eval_results_ner.txt")
        if trainer.is_world_process_zero():
402
403
            with open(output_eval_file, "w") as writer:
                logger.info("***** Eval results *****")
404
405
406
                for key, value in results.items():
                    logger.info(f"  {key} = {value}")
                    writer.write(f"{key} = {value}\n")
Julien Chaumond's avatar
Julien Chaumond committed
407
408

    # Predict
409
    if training_args.do_predict:
410
411
        logger.info("*** Predict ***")

412
        test_dataset = tokenized_datasets["test"]
413
414
        predictions, labels, metrics = trainer.predict(test_dataset)
        predictions = np.argmax(predictions, axis=2)
Julien Chaumond's avatar
Julien Chaumond committed
415

416
417
418
419
420
        # Remove ignored index (special tokens)
        true_predictions = [
            [label_list[p] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
Julien Chaumond's avatar
Julien Chaumond committed
421
422

        output_test_results_file = os.path.join(training_args.output_dir, "test_results.txt")
423
        if trainer.is_world_process_zero():
424
            with open(output_test_results_file, "w") as writer:
425
                for key, value in sorted(metrics.items()):
426
427
                    logger.info(f"  {key} = {value}")
                    writer.write(f"{key} = {value}\n")
Julien Chaumond's avatar
Julien Chaumond committed
428

429
        # Save predictions
Julien Chaumond's avatar
Julien Chaumond committed
430
        output_test_predictions_file = os.path.join(training_args.output_dir, "test_predictions.txt")
431
        if trainer.is_world_process_zero():
432
            with open(output_test_predictions_file, "w") as writer:
433
434
                for prediction in true_predictions:
                    writer.write(" ".join(prediction) + "\n")
435

436
437
438
    return results


439
440
441
442
443
def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


444
445
if __name__ == "__main__":
    main()