convert.py 9.18 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from inspect import signature
from itertools import chain
from pathlib import Path
from typing import Iterable, List, Tuple, Union

import numpy as np
from packaging.version import Version, parse

from .. import PreTrainedModel, PreTrainedTokenizer, TensorType, TFPreTrainedModel, is_torch_available
24
from ..file_utils import is_torch_onnx_dict_inputs_support_available
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
from ..utils import logging
from .config import OnnxConfig


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


# This is the minimal required version to support some ONNX Runtime features
ORT_QUANTIZE_MINIMUM_VERSION = parse("1.4.0")


def check_onnxruntime_requirements(minimum_version: Version):
    """
    Check onnxruntime is installed and if the installed version match is recent enough

    Raises:
        ImportError: If onnxruntime is not installed or too old version is found
    """
    try:
        import onnxruntime

        # Parse the version of the installed onnxruntime
        ort_version = parse(onnxruntime.__version__)

        # We require 1.4.0 minimum
        if ort_version < ORT_QUANTIZE_MINIMUM_VERSION:
            raise ImportError(
                f"We found an older version of onnxruntime ({onnxruntime.__version__}) "
                f"but we require onnxruntime to be >= {minimum_version} to enable all the conversions options.\n"
                f"Please update onnxruntime by running `pip install --upgrade onnxruntime`"
            )

    except ImportError:
        raise ImportError(
            "onnxruntime doesn't seem to be currently installed. "
            "Please install the onnxruntime by running `pip install onnxruntime`"
            " and relaunch the conversion."
        )


def export(
    tokenizer: PreTrainedTokenizer, model: PreTrainedModel, config: OnnxConfig, opset: int, output: Path
) -> Tuple[List[str], List[str]]:
    """
    Export a PyTorch backed pipeline to ONNX Intermediate Representation (IR

    Args:
        tokenizer:
        model:
        config:
        opset:
        output:

    Returns:

    """
    if not is_torch_available():
82
        raise ImportError("Cannot convert because PyTorch is not installed. Please install torch first.")
83
84
85
86

    import torch
    from torch.onnx import export

87
88
89
90
91
    from ..file_utils import torch_version

    if not is_torch_onnx_dict_inputs_support_available():
        raise AssertionError(f"Unsupported PyTorch version, minimum required is 1.8.0, got: {torch_version}")

92
93
94
    logger.info(f"Using framework PyTorch: {torch.__version__}")
    torch.set_grad_enabled(False)
    model.config.return_dict = True
95
    model.eval()
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

    # Check if we need to override certain configuration item
    if config.values_override is not None:
        logger.info(f"Overriding {len(config.values_override)} configuration item(s)")
        for override_config_key, override_config_value in config.values_override.items():
            logger.info(f"\t- {override_config_key} -> {override_config_value}")
            setattr(model.config, override_config_key, override_config_value)

    # Ensure inputs match
    # TODO: Check when exporting QA we provide "is_pair=True"
    model_inputs = config.generate_dummy_inputs(tokenizer, framework=TensorType.PYTORCH)
    inputs_match, matched_inputs = ensure_model_and_config_inputs_match(model, model_inputs.keys())
    onnx_outputs = list(config.outputs.keys())

    if not inputs_match:
        raise ValueError("Model and config inputs doesn't match")

113
114
    config.patch_ops()

115
116
117
118
119
120
121
122
123
124
125
126
127
128
    # export can works with named args but the dict containing named args as to be last element of the args tuple
    export(
        model,
        (model_inputs,),
        f=output.as_posix(),
        input_names=list(config.inputs.keys()),
        output_names=onnx_outputs,
        dynamic_axes={name: axes for name, axes in chain(config.inputs.items(), config.outputs.items())},
        do_constant_folding=True,
        use_external_data_format=config.use_external_data_format(model.num_parameters()),
        enable_onnx_checker=True,
        opset_version=opset,
    )

129
    config.restore_ops()
Lysandre's avatar
Lysandre committed
130
    torch.set_grad_enabled(True)
131

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
    return matched_inputs, onnx_outputs


def validate_model_outputs(
    config: OnnxConfig,
    tokenizer: PreTrainedTokenizer,
    reference_model: Union[PreTrainedModel, TFPreTrainedModel],
    onnx_model: Path,
    onnx_named_outputs: List[str],
    atol: float,
):
    from onnxruntime import InferenceSession, SessionOptions

    logger.info("Validating ONNX model...")

147
148
    # TODO: generate inputs with a different batch_size and seq_len that was used for conversion to properly test
    # dynamic input shapes.
149
150
151
152
153
154
155
156
157
158
159
160
    reference_model_inputs = config.generate_dummy_inputs(tokenizer, framework=TensorType.PYTORCH)

    # Create ONNX Runtime session
    options = SessionOptions()
    session = InferenceSession(onnx_model.as_posix(), options)

    # Compute outputs from the reference model
    ref_outputs = reference_model(**reference_model_inputs)
    ref_outputs_dict = {}

    # We flatten potential collection of outputs (i.e. past_keys) to a flat structure
    for name, value in ref_outputs.items():
161
162
163
164
        # Overwriting the output name as "present" since it is the name used for the ONNX ouputs
        # ("past_key_values" being taken for the ONNX inputs)
        if name == "past_key_values":
            name = "present"
165
        if isinstance(value, (list, tuple)):
166
            value = config.flatten_output_collection_property(name, value)
167
168
169
170
171
172
173
174
            ref_outputs_dict.update(value)
        else:
            ref_outputs_dict[name] = value

    # We flatten potential collection of inputs (i.e. past_keys)
    onnx_inputs = {}
    for name, value in reference_model_inputs.items():
        if isinstance(value, (list, tuple)):
175
            value = config.flatten_output_collection_property(name, value)
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
            onnx_inputs.update({tensor_name: pt_tensor.numpy() for tensor_name, pt_tensor in value.items()})
        else:
            onnx_inputs[name] = value.numpy()

    # Compute outputs from the ONNX model
    onnx_outputs = session.run(onnx_named_outputs, onnx_inputs)

    # Check we have a subset of the keys into onnx_outputs against ref_outputs
    ref_outputs_set, onnx_outputs_set = set(ref_outputs_dict.keys()), set(onnx_named_outputs)
    if not onnx_outputs_set.issubset(ref_outputs_set):
        logger.info(
            f"\t-[x] ONNX model outputs' name {onnx_outputs_set} doesn't match reference model {ref_outputs_set}"
        )

        raise ValueError(
            "Outputs doesn't match between reference model and ONNX exported model: "
            f"{onnx_outputs_set.difference(ref_outputs_set)}"
        )
    else:
        logger.info(f"\t-[鉁揮 ONNX model outputs' name match reference model ({onnx_outputs_set}")

    # Check the shape and values match
    for name, ort_value in zip(onnx_named_outputs, onnx_outputs):
199
        ref_value = ref_outputs_dict[name].detach().numpy()
200
201
202
203
204
205
206
207
208
209
        logger.info(f'\t- Validating ONNX Model output "{name}":')

        # Shape
        if not ort_value.shape == ref_value.shape:
            logger.info(f"\t\t-[x] shape {ort_value.shape} doesn't match {ref_value.shape}")
            raise ValueError(
                "Outputs shape doesn't match between reference model and ONNX exported model: "
                f"Got {ref_value.shape} (reference) and {ort_value.shape} (ONNX)"
            )
        else:
210
            logger.info(f"\t\t-[鉁揮 {ort_value.shape} matches {ref_value.shape}")
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242

        # Values
        if not np.allclose(ref_value, ort_value, atol=atol):
            logger.info(f"\t\t-[x] values not close enough (atol: {atol})")
            raise ValueError(
                "Outputs values doesn't match between reference model and ONNX exported model: "
                f"Got max absolute difference of: {np.amax(np.abs(ref_value - ort_value))}"
            )
        else:
            logger.info(f"\t\t-[鉁揮 all values close (atol: {atol})")


def ensure_model_and_config_inputs_match(
    model: Union[PreTrainedModel, TFPreTrainedModel], model_inputs: Iterable[str]
) -> Tuple[bool, List[str]]:
    """

    :param model_inputs:
    :param config_inputs:
    :return:
    """
    forward_parameters = signature(model.forward).parameters
    model_inputs_set = set(model_inputs)

    # We are fine if config_inputs has more keys than model_inputs
    forward_inputs_set = set(forward_parameters.keys())
    is_ok = model_inputs_set.issubset(forward_inputs_set)

    # Make sure the input order match (VERY IMPORTANT !!!!)
    matching_inputs = forward_inputs_set.intersection(model_inputs_set)
    ordered_inputs = [parameter for parameter in forward_parameters.keys() if parameter in matching_inputs]
    return is_ok, ordered_inputs