processing_utils.py 8.94 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
 Processing saving/loading class for common processors.
"""

import importlib.util
20
import os
21
22
from pathlib import Path

23
24
from .dynamic_module_utils import custom_object_save
from .tokenization_utils_base import PreTrainedTokenizerBase
25

26
27

# Dynamically import the Transformers module to grab the attribute classes of the processor form their names.
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
spec = importlib.util.spec_from_file_location(
    "transformers", Path(__file__).parent / "__init__.py", submodule_search_locations=[Path(__file__).parent]
)
transformers_module = spec.loader.load_module()


AUTO_TO_BASE_CLASS_MAPPING = {
    "AutoTokenizer": "PreTrainedTokenizerBase",
    "AutoFeatureExtractor": "FeatureExtractionMixin",
}


class ProcessorMixin:
    """
    This is a mixin used to provide saving/loading functionality for all processor classes.
    """

    attributes = ["feature_extractor", "tokenizer"]
    # Names need to be attr_class for attr in attributes
    feature_extractor_class = None
    tokenizer_class = None
49
    _auto_class = None
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

    # args have to match the attributes class attribute
    def __init__(self, *args, **kwargs):
        # Sanitize args and kwargs
        for key in kwargs:
            if key not in self.attributes:
                raise TypeError(f"Unexepcted keyword argument {key}.")
        for arg, attribute_name in zip(args, self.attributes):
            if attribute_name in kwargs:
                raise TypeError(f"Got multiple values for argument {attribute_name}.")
            else:
                kwargs[attribute_name] = arg

        if len(kwargs) != len(self.attributes):
            raise ValueError(
                f"This processor requires {len(self.attributes)} arguments: {', '.join(self.attributes)}. Got "
                f"{len(args)} arguments instead."
            )

        # Check each arg is of the proper class (this will also catch a user initializing in the wrong order)
        for attribute_name, arg in kwargs.items():
            class_name = getattr(self, f"{attribute_name}_class")
            # Nothing is ever going to be an instance of "AutoXxx", in that case we check the base class.
            class_name = AUTO_TO_BASE_CLASS_MAPPING.get(class_name, class_name)
            if isinstance(class_name, tuple):
                proper_class = tuple(getattr(transformers_module, n) for n in class_name if n is not None)
            else:
                proper_class = getattr(transformers_module, class_name)

            if not isinstance(arg, proper_class):
                raise ValueError(
                    f"Received a {type(arg).__name__} for argument {attribute_name}, but a {class_name} was expected."
                )

            setattr(self, attribute_name, arg)

    def __repr__(self):
        attributes_repr = [f"- {name}: {repr(getattr(self, name))}" for name in self.attributes]
        attributes_repr = "\n".join(attributes_repr)
        return f"{self.__class__.__name__}:\n{attributes_repr}"

    def save_pretrained(self, save_directory):
        """
        Saves the attributes of this processor (feature extractor, tokenizer...) in the specified directory so that it
        can be reloaded using the [`~ProcessorMixin.from_pretrained`] method.

        <Tip>

        This class method is simply calling [`~feature_extraction_utils.FeatureExtractionMixin.save_pretrained`] and
        [`~tokenization_utils_base.PreTrainedTokenizer.save_pretrained`]. Please refer to the docstrings of the methods
        above for more information.

        </Tip>

        Args:
            save_directory (`str` or `os.PathLike`):
                Directory where the feature extractor JSON file and the tokenizer files will be saved (directory will
                be created if it does not exist).
        """
109
110
111
112
113
114
115
116
        os.makedirs(save_directory, exist_ok=True)
        # If we have a custom config, we copy the file defining it in the folder and set the attributes so it can be
        # loaded from the Hub.
        if self._auto_class is not None:
            attrs = [getattr(self, attribute_name) for attribute_name in self.attributes]
            configs = [(a.init_kwargs if isinstance(a, PreTrainedTokenizerBase) else a) for a in attrs]
            custom_object_save(self, save_directory, config=configs)

117
118
119
120
121
122
123
124
        for attribute_name in self.attributes:
            attribute = getattr(self, attribute_name)
            # Include the processor class in the attribute config so this processor can then be reloaded with the
            # `AutoProcessor` API.
            if hasattr(attribute, "_set_processor_class"):
                attribute._set_processor_class(self.__class__.__name__)
            attribute.save_pretrained(save_directory)

125
126
127
128
129
130
131
        if self._auto_class is not None:
            # We added an attribute to the init_kwargs of the tokenizers, which needs to be cleaned up.
            for attribute_name in self.attributes:
                attribute = getattr(self, attribute_name)
                if isinstance(attribute, PreTrainedTokenizerBase):
                    del attribute.init_kwargs["auto_map"]

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
        r"""
        Instantiate a processor associated with a pretrained model.

        <Tip>

        This class method is simply calling the feature extractor
        [`~feature_extraction_utils.FeatureExtractionMixin.from_pretrained`] and the tokenizer
        [`~tokenization_utils_base.PreTrainedTokenizer.from_pretrained`] methods. Please refer to the docstrings of the
        methods above for more information.

        </Tip>

        Args:
            pretrained_model_name_or_path (`str` or `os.PathLike`):
                This can be either:

                - a string, the *model id* of a pretrained feature_extractor hosted inside a model repo on
                  huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or
                  namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`.
                - a path to a *directory* containing a feature extractor file saved using the
                  [`~SequenceFeatureExtractor.save_pretrained`] method, e.g., `./my_model_directory/`.
                - a path or url to a saved feature extractor JSON *file*, e.g.,
                  `./my_model_directory/preprocessor_config.json`.
            **kwargs
                Additional keyword arguments passed along to both
                [`~feature_extraction_utils.FeatureExtractionMixin.from_pretrained`] and
                [`~tokenization_utils_base.PreTrainedTokenizer.from_pretrained`].
        """
        args = cls._get_arguments_from_pretrained(pretrained_model_name_or_path, **kwargs)
        return cls(*args)

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
    @classmethod
    def register_for_auto_class(cls, auto_class="AutoProcessor"):
        """
        Register this class with a given auto class. This should only be used for custom feature extractors as the ones
        in the library are already mapped with `AutoProcessor`.

        <Tip warning={true}>

        This API is experimental and may have some slight breaking changes in the next releases.

        </Tip>

        Args:
            auto_class (`str` or `type`, *optional*, defaults to `"AutoProcessor"`):
                The auto class to register this new feature extractor with.
        """
        if not isinstance(auto_class, str):
            auto_class = auto_class.__name__

        import transformers.models.auto as auto_module

        if not hasattr(auto_module, auto_class):
            raise ValueError(f"{auto_class} is not a valid auto class.")

        cls._auto_class = auto_class

191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
    @classmethod
    def _get_arguments_from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
        args = []
        for attribute_name in cls.attributes:
            class_name = getattr(cls, f"{attribute_name}_class")
            if isinstance(class_name, tuple):
                classes = tuple(getattr(transformers_module, n) if n is not None else None for n in class_name)
                use_fast = kwargs.get("use_fast", True)
                if use_fast and classes[1] is not None:
                    attribute_class = classes[1]
                else:
                    attribute_class = classes[0]
            else:
                attribute_class = getattr(transformers_module, class_name)

            args.append(attribute_class.from_pretrained(pretrained_model_name_or_path, **kwargs))
        return args