test_image_processing_vilt.py 8.9 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

import numpy as np

from transformers.testing_utils import require_torch, require_vision
22
from transformers.utils import is_torch_available, is_vision_available
NielsRogge's avatar
NielsRogge committed
23

24
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
NielsRogge's avatar
NielsRogge committed
25
26
27
28
29
30
31
32


if is_torch_available():
    import torch

if is_vision_available():
    from PIL import Image

33
    from transformers import ViltImageProcessor
NielsRogge's avatar
NielsRogge committed
34
35


36
class ViltImageProcessingTester(unittest.TestCase):
NielsRogge's avatar
NielsRogge committed
37
38
39
40
41
42
43
44
45
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        image_size=18,
        min_resolution=30,
        max_resolution=400,
        do_resize=True,
amyeroberts's avatar
amyeroberts committed
46
        size=None,
NielsRogge's avatar
NielsRogge committed
47
48
49
50
51
        size_divisor=2,
        do_normalize=True,
        image_mean=[0.5, 0.5, 0.5],
        image_std=[0.5, 0.5, 0.5],
    ):
amyeroberts's avatar
amyeroberts committed
52
        size = size if size is not None else {"shortest_edge": 30}
NielsRogge's avatar
NielsRogge committed
53
54
55
56
57
58
59
60
61
62
63
64
65
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.image_size = image_size
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.do_resize = do_resize
        self.size = size
        self.size_divisor = size_divisor
        self.do_normalize = do_normalize
        self.image_mean = image_mean
        self.image_std = image_std

66
    def prepare_image_processor_dict(self):
NielsRogge's avatar
NielsRogge committed
67
68
69
70
71
72
73
74
75
76
77
        return {
            "image_mean": self.image_mean,
            "image_std": self.image_std,
            "do_normalize": self.do_normalize,
            "do_resize": self.do_resize,
            "size": self.size,
            "size_divisor": self.size_divisor,
        }

    def get_expected_values(self, image_inputs, batched=False):
        """
78
        This function computes the expected height and width when providing images to ViltImageProcessor,
NielsRogge's avatar
NielsRogge committed
79
80
81
        assuming do_resize is set to True with a scalar size and size_divisor.
        """
        if not batched:
amyeroberts's avatar
amyeroberts committed
82
            size = self.size["shortest_edge"]
NielsRogge's avatar
NielsRogge committed
83
84
85
86
87
            image = image_inputs[0]
            if isinstance(image, Image.Image):
                w, h = image.size
            else:
                h, w = image.shape[1], image.shape[2]
amyeroberts's avatar
amyeroberts committed
88
            scale = size / min(w, h)
NielsRogge's avatar
NielsRogge committed
89
            if h < w:
amyeroberts's avatar
amyeroberts committed
90
                newh, neww = size, scale * w
NielsRogge's avatar
NielsRogge committed
91
            else:
amyeroberts's avatar
amyeroberts committed
92
                newh, neww = scale * h, size
NielsRogge's avatar
NielsRogge committed
93

amyeroberts's avatar
amyeroberts committed
94
            max_size = int((1333 / 800) * size)
NielsRogge's avatar
NielsRogge committed
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
            if max(newh, neww) > max_size:
                scale = max_size / max(newh, neww)
                newh = newh * scale
                neww = neww * scale

            newh, neww = int(newh + 0.5), int(neww + 0.5)
            expected_height, expected_width = (
                newh // self.size_divisor * self.size_divisor,
                neww // self.size_divisor * self.size_divisor,
            )

        else:
            expected_values = []
            for image in image_inputs:
                expected_height, expected_width = self.get_expected_values([image])
                expected_values.append((expected_height, expected_width))
            expected_height = max(expected_values, key=lambda item: item[0])[0]
            expected_width = max(expected_values, key=lambda item: item[1])[1]

        return expected_height, expected_width


@require_torch
@require_vision
119
120
class ViltImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
    image_processing_class = ViltImageProcessor if is_vision_available() else None
NielsRogge's avatar
NielsRogge committed
121
122

    def setUp(self):
123
        self.image_processor_tester = ViltImageProcessingTester(self)
NielsRogge's avatar
NielsRogge committed
124
125

    @property
126
127
    def image_processor_dict(self):
        return self.image_processor_tester.prepare_image_processor_dict()
NielsRogge's avatar
NielsRogge committed
128

129
130
131
132
133
134
135
136
    def test_image_processor_properties(self):
        image_processing = self.image_processing_class(**self.image_processor_dict)
        self.assertTrue(hasattr(image_processing, "image_mean"))
        self.assertTrue(hasattr(image_processing, "image_std"))
        self.assertTrue(hasattr(image_processing, "do_normalize"))
        self.assertTrue(hasattr(image_processing, "do_resize"))
        self.assertTrue(hasattr(image_processing, "size"))
        self.assertTrue(hasattr(image_processing, "size_divisor"))
NielsRogge's avatar
NielsRogge committed
137

138
139
140
    def test_image_processor_from_dict_with_kwargs(self):
        image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
        self.assertEqual(image_processor.size, {"shortest_edge": 30})
141

142
143
        image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42)
        self.assertEqual(image_processor.size, {"shortest_edge": 42})
144

NielsRogge's avatar
NielsRogge committed
145
146
147
148
    def test_batch_feature(self):
        pass

    def test_call_pil(self):
149
150
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
NielsRogge's avatar
NielsRogge committed
151
        # create random PIL images
152
        image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False)
NielsRogge's avatar
NielsRogge committed
153
154
155
156
        for image in image_inputs:
            self.assertIsInstance(image, Image.Image)

        # Test not batched input
157
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
NielsRogge's avatar
NielsRogge committed
158

159
        expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs)
NielsRogge's avatar
NielsRogge committed
160
161
        self.assertEqual(
            encoded_images.shape,
162
            (1, self.image_processor_tester.num_channels, expected_height, expected_width),
NielsRogge's avatar
NielsRogge committed
163
164
165
        )

        # Test batched
166
        encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
NielsRogge's avatar
NielsRogge committed
167

168
        expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True)
NielsRogge's avatar
NielsRogge committed
169
170
171
        self.assertEqual(
            encoded_images.shape,
            (
172
173
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
NielsRogge's avatar
NielsRogge committed
174
175
176
177
178
179
                expected_height,
                expected_width,
            ),
        )

    def test_call_numpy(self):
180
181
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
NielsRogge's avatar
NielsRogge committed
182
        # create random numpy tensors
183
        image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, numpify=True)
NielsRogge's avatar
NielsRogge committed
184
185
186
187
        for image in image_inputs:
            self.assertIsInstance(image, np.ndarray)

        # Test not batched input
188
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
NielsRogge's avatar
NielsRogge committed
189

190
        expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs)
NielsRogge's avatar
NielsRogge committed
191
192
        self.assertEqual(
            encoded_images.shape,
193
            (1, self.image_processor_tester.num_channels, expected_height, expected_width),
NielsRogge's avatar
NielsRogge committed
194
195
196
        )

        # Test batched
197
        encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
NielsRogge's avatar
NielsRogge committed
198

199
        expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True)
NielsRogge's avatar
NielsRogge committed
200
201
202
        self.assertEqual(
            encoded_images.shape,
            (
203
204
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
NielsRogge's avatar
NielsRogge committed
205
206
207
208
209
210
                expected_height,
                expected_width,
            ),
        )

    def test_call_pytorch(self):
211
212
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
NielsRogge's avatar
NielsRogge committed
213
        # create random PyTorch tensors
214
        image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
NielsRogge's avatar
NielsRogge committed
215
216
217
218
        for image in image_inputs:
            self.assertIsInstance(image, torch.Tensor)

        # Test not batched input
219
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
NielsRogge's avatar
NielsRogge committed
220

221
        expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs)
NielsRogge's avatar
NielsRogge committed
222
223
        self.assertEqual(
            encoded_images.shape,
224
            (1, self.image_processor_tester.num_channels, expected_height, expected_width),
NielsRogge's avatar
NielsRogge committed
225
226
227
        )

        # Test batched
228
        encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
NielsRogge's avatar
NielsRogge committed
229

230
        expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True)
NielsRogge's avatar
NielsRogge committed
231
232
233
        self.assertEqual(
            encoded_images.shape,
            (
234
235
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
NielsRogge's avatar
NielsRogge committed
236
237
238
239
                expected_height,
                expected_width,
            ),
        )