test_processor_pop2piano.py 9.38 KB
Newer Older
Susnato Dhar's avatar
Susnato Dhar committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import shutil
import tempfile
import unittest

import numpy as np
import pytest
from datasets import load_dataset

from transformers.testing_utils import (
    require_essentia,
    require_librosa,
    require_pretty_midi,
    require_scipy,
    require_torch,
)
from transformers.tokenization_utils import BatchEncoding
from transformers.utils.import_utils import (
    is_essentia_available,
    is_librosa_available,
    is_pretty_midi_available,
    is_scipy_available,
    is_torch_available,
)


requirements_available = (
    is_torch_available()
    and is_essentia_available()
    and is_scipy_available()
    and is_librosa_available()
    and is_pretty_midi_available()
)

if requirements_available:
    import pretty_midi

    from transformers import (
        Pop2PianoFeatureExtractor,
        Pop2PianoForConditionalGeneration,
        Pop2PianoProcessor,
        Pop2PianoTokenizer,
    )

## TODO : changing checkpoints from `susnato/pop2piano_dev` to `sweetcocoa/pop2piano` after the PR is approved


@require_scipy
@require_torch
@require_librosa
@require_essentia
@require_pretty_midi
class Pop2PianoProcessorTest(unittest.TestCase):
    def setUp(self):
        self.tmpdirname = tempfile.mkdtemp()

        feature_extractor = Pop2PianoFeatureExtractor.from_pretrained("susnato/pop2piano_dev")
        tokenizer = Pop2PianoTokenizer.from_pretrained("susnato/pop2piano_dev")
        processor = Pop2PianoProcessor(feature_extractor, tokenizer)

        processor.save_pretrained(self.tmpdirname)

    def get_tokenizer(self, **kwargs):
        return Pop2PianoTokenizer.from_pretrained(self.tmpdirname, **kwargs)

    def get_feature_extractor(self, **kwargs):
        return Pop2PianoFeatureExtractor.from_pretrained(self.tmpdirname, **kwargs)

    def tearDown(self):
        shutil.rmtree(self.tmpdirname)

    def test_save_load_pretrained_additional_features(self):
        processor = Pop2PianoProcessor(
            tokenizer=self.get_tokenizer(),
            feature_extractor=self.get_feature_extractor(),
        )
        processor.save_pretrained(self.tmpdirname)

        tokenizer_add_kwargs = self.get_tokenizer(
            unk_token="-1",
            eos_token="1",
            pad_token="0",
            bos_token="2",
        )
        feature_extractor_add_kwargs = self.get_feature_extractor()

        processor = Pop2PianoProcessor.from_pretrained(
            self.tmpdirname,
            unk_token="-1",
            eos_token="1",
            pad_token="0",
            bos_token="2",
        )

        self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
        self.assertIsInstance(processor.tokenizer, Pop2PianoTokenizer)

        self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string())
        self.assertIsInstance(processor.feature_extractor, Pop2PianoFeatureExtractor)

    def get_inputs(self):
        """get inputs for both feature extractor and tokenizer"""
        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
        speech_samples = ds.sort("id").select([0])["audio"]
        input_speech = [x["array"] for x in speech_samples][0]
        sampling_rate = [x["sampling_rate"] for x in speech_samples][0]

        feature_extractor_outputs = self.get_feature_extractor()(
            audio=input_speech, sampling_rate=sampling_rate, return_tensors="pt"
        )
        model = Pop2PianoForConditionalGeneration.from_pretrained("susnato/pop2piano_dev")
        token_ids = model.generate(input_features=feature_extractor_outputs["input_features"], composer="composer1")
        dummy_notes = [
            [
                pretty_midi.Note(start=0.441179, end=2.159456, pitch=70, velocity=77),
                pretty_midi.Note(start=0.673379, end=0.905578, pitch=73, velocity=77),
                pretty_midi.Note(start=0.905578, end=2.159456, pitch=73, velocity=77),
                pretty_midi.Note(start=1.114558, end=2.159456, pitch=78, velocity=77),
                pretty_midi.Note(start=1.323537, end=1.532517, pitch=80, velocity=77),
            ],
            [
                pretty_midi.Note(start=0.441179, end=2.159456, pitch=70, velocity=77),
            ],
        ]

        return input_speech, sampling_rate, token_ids, dummy_notes

    def test_feature_extractor(self):
        feature_extractor = self.get_feature_extractor()
        tokenizer = self.get_tokenizer()

        processor = Pop2PianoProcessor(
            tokenizer=tokenizer,
            feature_extractor=feature_extractor,
        )

        input_speech, sampling_rate, _, _ = self.get_inputs()

        feature_extractor_outputs = feature_extractor(
            audio=input_speech, sampling_rate=sampling_rate, return_tensors="np"
        )
        processor_outputs = processor(audio=input_speech, sampling_rate=sampling_rate, return_tensors="np")

        for key in feature_extractor_outputs.keys():
            self.assertTrue(np.allclose(feature_extractor_outputs[key], processor_outputs[key], atol=1e-4))

    def test_processor_batch_decode(self):
        feature_extractor = self.get_feature_extractor()
        tokenizer = self.get_tokenizer()

        processor = Pop2PianoProcessor(
            tokenizer=tokenizer,
            feature_extractor=feature_extractor,
        )

        audio, sampling_rate, token_ids, _ = self.get_inputs()
        feature_extractor_output = feature_extractor(audio=audio, sampling_rate=sampling_rate, return_tensors="pt")

        encoded_processor = processor.batch_decode(
            token_ids=token_ids,
            feature_extractor_output=feature_extractor_output,
            return_midi=True,
        )

        encoded_tokenizer = tokenizer.batch_decode(
            token_ids=token_ids,
            feature_extractor_output=feature_extractor_output,
            return_midi=True,
        )
        # check start timings
        encoded_processor_start_timings = [token.start for token in encoded_processor["notes"]]
        encoded_tokenizer_start_timings = [token.start for token in encoded_tokenizer["notes"]]
        self.assertListEqual(encoded_processor_start_timings, encoded_tokenizer_start_timings)

        # check end timings
        encoded_processor_end_timings = [token.end for token in encoded_processor["notes"]]
        encoded_tokenizer_end_timings = [token.end for token in encoded_tokenizer["notes"]]
        self.assertListEqual(encoded_processor_end_timings, encoded_tokenizer_end_timings)

        # check pitch
        encoded_processor_pitch = [token.pitch for token in encoded_processor["notes"]]
        encoded_tokenizer_pitch = [token.pitch for token in encoded_tokenizer["notes"]]
        self.assertListEqual(encoded_processor_pitch, encoded_tokenizer_pitch)

        # check velocity
        encoded_processor_velocity = [token.velocity for token in encoded_processor["notes"]]
        encoded_tokenizer_velocity = [token.velocity for token in encoded_tokenizer["notes"]]
        self.assertListEqual(encoded_processor_velocity, encoded_tokenizer_velocity)

    def test_tokenizer_call(self):
        feature_extractor = self.get_feature_extractor()
        tokenizer = self.get_tokenizer()

        processor = Pop2PianoProcessor(
            tokenizer=tokenizer,
            feature_extractor=feature_extractor,
        )

        _, _, _, notes = self.get_inputs()

        encoded_processor = processor(
            notes=notes,
        )

        self.assertTrue(isinstance(encoded_processor, BatchEncoding))

    def test_processor(self):
        feature_extractor = self.get_feature_extractor()
        tokenizer = self.get_tokenizer()

        processor = Pop2PianoProcessor(
            tokenizer=tokenizer,
            feature_extractor=feature_extractor,
        )

        audio, sampling_rate, _, notes = self.get_inputs()

        inputs = processor(
            audio=audio,
            sampling_rate=sampling_rate,
            notes=notes,
        )

        self.assertListEqual(
            list(inputs.keys()),
            ["input_features", "beatsteps", "extrapolated_beatstep", "token_ids"],
        )

        # test if it raises when no input is passed
        with pytest.raises(ValueError):
            processor()

    def test_model_input_names(self):
        feature_extractor = self.get_feature_extractor()
        tokenizer = self.get_tokenizer()

        processor = Pop2PianoProcessor(
            tokenizer=tokenizer,
            feature_extractor=feature_extractor,
        )

        audio, sampling_rate, _, notes = self.get_inputs()
        feature_extractor(audio, sampling_rate, return_tensors="pt")

        inputs = processor(
            audio=audio,
            sampling_rate=sampling_rate,
            notes=notes,
        )
        self.assertListEqual(
            list(inputs.keys()),
            ["input_features", "beatsteps", "extrapolated_beatstep", "token_ids"],
        )