test_modeling_beit.py 21.1 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch BEiT model. """


import unittest

20
from datasets import load_dataset
21
from packaging import version
22

NielsRogge's avatar
NielsRogge committed
23
from transformers import BeitConfig
24
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
25
from transformers.utils import cached_property, is_torch_available, is_vision_available
NielsRogge's avatar
NielsRogge committed
26

NielsRogge's avatar
NielsRogge committed
27
from ...test_backbone_common import BackboneTesterMixin
Yih-Dar's avatar
Yih-Dar committed
28
29
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
30
from ...test_pipeline_mixin import PipelineTesterMixin
NielsRogge's avatar
NielsRogge committed
31
32
33
34
35
36


if is_torch_available():
    import torch
    from torch import nn

37
    from transformers import (
NielsRogge's avatar
NielsRogge committed
38
        BeitBackbone,
39
40
41
42
43
        BeitForImageClassification,
        BeitForMaskedImageModeling,
        BeitForSemanticSegmentation,
        BeitModel,
    )
44
    from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
45
    from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST
NielsRogge's avatar
NielsRogge committed
46
47
48


if is_vision_available():
49
    import PIL
NielsRogge's avatar
NielsRogge committed
50
51
    from PIL import Image

52
    from transformers import BeitImageProcessor
NielsRogge's avatar
NielsRogge committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66


class BeitModelTester:
    def __init__(
        self,
        parent,
        vocab_size=100,
        batch_size=13,
        image_size=30,
        patch_size=2,
        num_channels=3,
        is_training=True,
        use_labels=True,
        hidden_size=32,
NielsRogge's avatar
NielsRogge committed
67
        num_hidden_layers=4,
NielsRogge's avatar
NielsRogge committed
68
69
70
71
72
73
74
75
76
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        type_sequence_label_size=10,
        initializer_range=0.02,
        num_labels=3,
        scope=None,
NielsRogge's avatar
NielsRogge committed
77
78
        out_indices=[1, 2, 3, 4],
        out_features=["stage1", "stage2", "stage3", "stage4"],
NielsRogge's avatar
NielsRogge committed
79
80
    ):
        self.parent = parent
NielsRogge's avatar
NielsRogge committed
81
        self.vocab_size = vocab_size
NielsRogge's avatar
NielsRogge committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
        self.batch_size = batch_size
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.is_training = is_training
        self.use_labels = use_labels
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.scope = scope
98
        self.out_indices = out_indices
NielsRogge's avatar
NielsRogge committed
99
        self.out_features = out_features
100
        self.num_labels = num_labels
NielsRogge's avatar
NielsRogge committed
101

NielsRogge's avatar
NielsRogge committed
102
        # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
103
        num_patches = (image_size // patch_size) ** 2
NielsRogge's avatar
NielsRogge committed
104
        self.seq_length = num_patches + 1
105

NielsRogge's avatar
NielsRogge committed
106
107
108
109
    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])

        labels = None
110
        pixel_labels = None
NielsRogge's avatar
NielsRogge committed
111
112
        if self.use_labels:
            labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
113
            pixel_labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels)
NielsRogge's avatar
NielsRogge committed
114
115
116

        config = self.get_config()

117
        return config, pixel_values, labels, pixel_labels
NielsRogge's avatar
NielsRogge committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

    def get_config(self):
        return BeitConfig(
            vocab_size=self.vocab_size,
            image_size=self.image_size,
            patch_size=self.patch_size,
            num_channels=self.num_channels,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            is_decoder=False,
            initializer_range=self.initializer_range,
134
            out_indices=self.out_indices,
NielsRogge's avatar
NielsRogge committed
135
            out_features=self.out_features,
NielsRogge's avatar
NielsRogge committed
136
137
        )

138
    def create_and_check_model(self, config, pixel_values, labels, pixel_labels):
NielsRogge's avatar
NielsRogge committed
139
140
141
142
        model = BeitModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
NielsRogge's avatar
NielsRogge committed
143
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
NielsRogge's avatar
NielsRogge committed
144

NielsRogge's avatar
NielsRogge committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
    def create_and_check_backbone(self, config, pixel_values, labels, pixel_labels):
        model = BeitBackbone(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)

        # verify hidden states
        self.parent.assertEqual(len(result.feature_maps), len(config.out_features))
        expected_height = expected_width = self.image_size // config.patch_size
        self.parent.assertListEqual(
            list(result.feature_maps[0].shape), [self.batch_size, self.hidden_size, expected_height, expected_width]
        )

        # verify channels
        self.parent.assertEqual(len(model.channels), len(config.out_features))

        # verify backbone works with out_features=None
        config.out_features = None
        model = BeitBackbone(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)

        # verify feature maps
        self.parent.assertEqual(len(result.feature_maps), 1)
        self.parent.assertListEqual(
            list(result.feature_maps[0].shape), [self.batch_size, self.hidden_size, expected_height, expected_width]
        )

        # verify channels
        self.parent.assertEqual(len(model.channels), 1)

177
    def create_and_check_for_masked_lm(self, config, pixel_values, labels, pixel_labels):
NielsRogge's avatar
NielsRogge committed
178
179
180
181
        model = BeitForMaskedImageModeling(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
NielsRogge's avatar
NielsRogge committed
182
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size))
NielsRogge's avatar
NielsRogge committed
183

184
    def create_and_check_for_image_classification(self, config, pixel_values, labels, pixel_labels):
NielsRogge's avatar
NielsRogge committed
185
186
187
188
189
190
191
        config.num_labels = self.type_sequence_label_size
        model = BeitForImageClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values, labels=labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))

NielsRogge's avatar
NielsRogge committed
192
193
194
195
196
197
198
199
200
201
        # test greyscale images
        config.num_channels = 1
        model = BeitForImageClassification(config)
        model.to(torch_device)
        model.eval()

        pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
        result = model(pixel_values, labels=labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))

NielsRogge's avatar
NielsRogge committed
202
    def create_and_check_for_semantic_segmentation(self, config, pixel_values, labels, pixel_labels):
203
204
205
206
207
208
        config.num_labels = self.num_labels
        model = BeitForSemanticSegmentation(config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
        self.parent.assertEqual(
209
            result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2)
210
211
212
        )
        result = model(pixel_values, labels=pixel_labels)
        self.parent.assertEqual(
213
            result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2)
214
215
        )

NielsRogge's avatar
NielsRogge committed
216
217
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
218
        config, pixel_values, labels, pixel_labels = config_and_inputs
NielsRogge's avatar
NielsRogge committed
219
220
221
222
223
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_torch
224
class BeitModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
NielsRogge's avatar
NielsRogge committed
225
226
227
228
229
230
    """
    Here we also overwrite some of the tests of test_modeling_common.py, as BEiT does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

    all_model_classes = (
NielsRogge's avatar
NielsRogge committed
231
232
233
234
235
236
237
        (
            BeitModel,
            BeitForImageClassification,
            BeitForMaskedImageModeling,
            BeitForSemanticSegmentation,
            BeitBackbone,
        )
238
239
        if is_torch_available()
        else ()
NielsRogge's avatar
NielsRogge committed
240
    )
241
242
    pipeline_model_mapping = (
        {
243
            "image-feature-extraction": BeitModel,
244
245
246
247
248
249
            "image-classification": BeitForImageClassification,
            "image-segmentation": BeitForSemanticSegmentation,
        }
        if is_torch_available()
        else {}
    )
NielsRogge's avatar
NielsRogge committed
250
251
252
253
254
255
256
257
258
259
260
261

    test_pruning = False
    test_resize_embeddings = False
    test_head_masking = False

    def setUp(self):
        self.model_tester = BeitModelTester(self)
        self.config_tester = ConfigTester(self, config_class=BeitConfig, has_text_modality=False, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

NielsRogge's avatar
NielsRogge committed
262
    @unittest.skip(reason="BEiT does not use inputs_embeds")
NielsRogge's avatar
NielsRogge committed
263
264
265
    def test_inputs_embeds(self):
        pass

266
267
268
269
270
    @require_torch_multi_gpu
    @unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`")
    def test_multi_gpu_data_parallel_forward(self):
        pass

NielsRogge's avatar
NielsRogge committed
271
272
273
274
    @unittest.skip(reason="BEiT does not support feedforward chunking yet")
    def test_feed_forward_chunking(self):
        pass

NielsRogge's avatar
NielsRogge committed
275
276
277
278
279
280
281
282
283
284
285
286
287
    def test_model_common_attributes(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, nn.Linear))

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

NielsRogge's avatar
NielsRogge committed
288
289
290
291
    def test_backbone(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_backbone(*config_and_inputs)

NielsRogge's avatar
NielsRogge committed
292
293
294
295
296
297
298
299
300
    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)

    def test_for_image_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_image_classification(*config_and_inputs)

    def test_for_semantic_segmentation(self):
301
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
NielsRogge's avatar
NielsRogge committed
302
        self.model_tester.create_and_check_for_semantic_segmentation(*config_and_inputs)
303

NielsRogge's avatar
NielsRogge committed
304
305
306
307
308
309
310
311
312
    def test_training(self):
        if not self.model_tester.is_training:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        for model_class in self.all_model_classes:
            # we don't test BeitForMaskedImageModeling
313
314
315
316
            if model_class.__name__ in [
                *MODEL_MAPPING_NAMES.values(),
                *MODEL_FOR_BACKBONE_MAPPING_NAMES.values(),
                "BeitForMaskedImageModeling",
NielsRogge's avatar
NielsRogge committed
317
            ]:
318
                continue
319

320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    def test_training_gradient_checkpointing(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.model_tester.is_training:
            return

        config.use_cache = False
        config.return_dict = True

        for model_class in self.all_model_classes:
            # we don't test BeitForMaskedImageModeling
337
            if (
338
339
340
341
342
343
                model_class.__name__
                in [
                    *MODEL_MAPPING_NAMES.values(),
                    *MODEL_FOR_BACKBONE_MAPPING_NAMES.values(),
                    "BeitForMaskedImageModeling",
                ]
344
345
                or not model_class.supports_gradient_checkpointing
            ):
NielsRogge's avatar
NielsRogge committed
346
                continue
NielsRogge's avatar
NielsRogge committed
347

NielsRogge's avatar
NielsRogge committed
348
            model = model_class(config)
349
            model.gradient_checkpointing_enable()
NielsRogge's avatar
NielsRogge committed
350
351
352
353
354
355
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

356
357
358
359
360
361
362
363
364
365
366
367
    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant(self):
        pass

    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant_false(self):
        pass

NielsRogge's avatar
NielsRogge committed
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
    def test_initialization(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                # we skip lambda parameters as these require special initial values
                # determined by config.layer_scale_init_value
                if "lambda" in name:
                    continue
                if param.requires_grad:
                    self.assertIn(
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
                        [0.0, 1.0],
                        msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                    )

    @slow
    def test_model_from_pretrained(self):
        for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = BeitModel.from_pretrained(model_name)
            self.assertIsNotNone(model)


# We will verify our results on an image of cute cats
def prepare_img():
    image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
    return image


399
@require_torch
NielsRogge's avatar
NielsRogge committed
400
401
402
@require_vision
class BeitModelIntegrationTest(unittest.TestCase):
    @cached_property
403
404
    def default_image_processor(self):
        return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224") if is_vision_available() else None
NielsRogge's avatar
NielsRogge committed
405

406
407
408
409
    @slow
    def test_inference_masked_image_modeling_head(self):
        model = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k").to(torch_device)

410
        image_processor = self.default_image_processor
411
        image = prepare_img()
412
        pixel_values = image_processor(images=image, return_tensors="pt").pixel_values.to(torch_device)
413
414
415
416
417

        # prepare bool_masked_pos
        bool_masked_pos = torch.ones((1, 196), dtype=torch.bool).to(torch_device)

        # forward pass
418
419
        with torch.no_grad():
            outputs = model(pixel_values=pixel_values, bool_masked_pos=bool_masked_pos)
420
421
422
423
424
425
426
427
428
429
430
431
        logits = outputs.logits

        # verify the logits
        expected_shape = torch.Size((1, 196, 8192))
        self.assertEqual(logits.shape, expected_shape)

        expected_slice = torch.tensor(
            [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]]
        ).to(torch_device)

        self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3], expected_slice, atol=1e-2))

NielsRogge's avatar
NielsRogge committed
432
433
434
435
    @slow
    def test_inference_image_classification_head_imagenet_1k(self):
        model = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224").to(torch_device)

436
        image_processor = self.default_image_processor
NielsRogge's avatar
NielsRogge committed
437
        image = prepare_img()
438
        inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
NielsRogge's avatar
NielsRogge committed
439
440

        # forward pass
441
442
        with torch.no_grad():
            outputs = model(**inputs)
NielsRogge's avatar
NielsRogge committed
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
        logits = outputs.logits

        # verify the logits
        expected_shape = torch.Size((1, 1000))
        self.assertEqual(logits.shape, expected_shape)

        expected_slice = torch.tensor([-1.2385, -1.0987, -1.0108]).to(torch_device)

        self.assertTrue(torch.allclose(logits[0, :3], expected_slice, atol=1e-4))

        expected_class_idx = 281
        self.assertEqual(logits.argmax(-1).item(), expected_class_idx)

    @slow
    def test_inference_image_classification_head_imagenet_22k(self):
        model = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k").to(
            torch_device
        )

462
        image_processor = self.default_image_processor
NielsRogge's avatar
NielsRogge committed
463
        image = prepare_img()
464
        inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
NielsRogge's avatar
NielsRogge committed
465
466

        # forward pass
467
468
        with torch.no_grad():
            outputs = model(**inputs)
NielsRogge's avatar
NielsRogge committed
469
470
471
472
473
474
475
476
477
478
479
480
        logits = outputs.logits

        # verify the logits
        expected_shape = torch.Size((1, 21841))
        self.assertEqual(logits.shape, expected_shape)

        expected_slice = torch.tensor([1.6881, -0.2787, 0.5901]).to(torch_device)

        self.assertTrue(torch.allclose(logits[0, :3], expected_slice, atol=1e-4))

        expected_class_idx = 2396
        self.assertEqual(logits.argmax(-1).item(), expected_class_idx)
481
482
483
484
485
486

    @slow
    def test_inference_semantic_segmentation(self):
        model = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640")
        model = model.to(torch_device)

487
        image_processor = BeitImageProcessor(do_resize=True, size=640, do_center_crop=False)
488
489
490

        ds = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")
        image = Image.open(ds[0]["file"])
491
        inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
492
493

        # forward pass
494
495
        with torch.no_grad():
            outputs = model(**inputs)
496
497
498
        logits = outputs.logits

        # verify the logits
499
        expected_shape = torch.Size((1, 150, 160, 160))
500
501
        self.assertEqual(logits.shape, expected_shape)

502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
        is_pillow_less_than_9 = version.parse(PIL.__version__) < version.parse("9.0.0")

        if is_pillow_less_than_9:
            expected_slice = torch.tensor(
                [
                    [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]],
                    [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]],
                    [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]],
                ],
                device=torch_device,
            )
        else:
            expected_slice = torch.tensor(
                [
                    [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]],
                    [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]],
                    [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]],
                ],
                device=torch_device,
            )
522
523

        self.assertTrue(torch.allclose(logits[0, :3, :3, :3], expected_slice, atol=1e-4))
524
525
526
527
528
529

    @slow
    def test_post_processing_semantic_segmentation(self):
        model = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640")
        model = model.to(torch_device)

530
        image_processor = BeitImageProcessor(do_resize=True, size=640, do_center_crop=False)
531
532
533

        ds = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")
        image = Image.open(ds[0]["file"])
534
        inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
535
536
537
538
539
540
541

        # forward pass
        with torch.no_grad():
            outputs = model(**inputs)

        outputs.logits = outputs.logits.detach().cpu()

542
        segmentation = image_processor.post_process_semantic_segmentation(outputs=outputs, target_sizes=[(500, 300)])
543
544
545
        expected_shape = torch.Size((500, 300))
        self.assertEqual(segmentation[0].shape, expected_shape)

546
        segmentation = image_processor.post_process_semantic_segmentation(outputs=outputs)
547
548
        expected_shape = torch.Size((160, 160))
        self.assertEqual(segmentation[0].shape, expected_shape)
NielsRogge's avatar
NielsRogge committed
549
550
551
552
553
554
555
556
557


@require_torch
class BeitBackboneTest(unittest.TestCase, BackboneTesterMixin):
    all_model_classes = (BeitBackbone,) if is_torch_available() else ()
    config_class = BeitConfig

    def setUp(self):
        self.model_tester = BeitModelTester(self)