run_openai_gpt.py 14 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" OpenAI GPT model fine-tuning script.
    Adapted from https://github.com/huggingface/pytorch-openai-transformer-lm/blob/master/train.py
    It self adapted from https://github.com/openai/finetune-transformer-lm/blob/master/train.py

Ben Johnson's avatar
Ben Johnson committed
20
21
22
23
24
25
26
27
28
    This script with default values fine-tunes and evaluate a pretrained OpenAI GPT on the RocStories dataset:
        python run_openai_gpt.py \
          --model_name openai-gpt \
          --do_train \
          --do_eval \
          --train_dataset $ROC_STORIES_DIR/cloze_test_val__spring2016\ -\ cloze_test_ALL_val.csv \
          --eval_dataset $ROC_STORIES_DIR/cloze_test_test__spring2016\ -\ cloze_test_ALL_test.csv \
          --output_dir ../log \
          --train_batch_size 16 \
thomwolf's avatar
thomwolf committed
29
30
31
32
33
34
35
36
37
38
39
40
41
"""
import argparse
import os
import csv
import random
import logging
from tqdm import tqdm, trange

import numpy as np
import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
                              TensorDataset)

thomwolf's avatar
thomwolf committed
42
from pytorch_transformers import (OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer,
43
44
                                     AdamW, cached_path, WEIGHTS_NAME, CONFIG_NAME,
                                     WarmupLinearSchedule)
thomwolf's avatar
thomwolf committed
45
46

ROCSTORIES_URL = "https://s3.amazonaws.com/datasets.huggingface.co/ROCStories.tar.gz"
thomwolf's avatar
thomwolf committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                    datefmt = '%m/%d/%Y %H:%M:%S',
                    level = logging.INFO)
logger = logging.getLogger(__name__)

def accuracy(out, labels):
    outputs = np.argmax(out, axis=1)
    return np.sum(outputs == labels)

def load_rocstories_dataset(dataset_path):
    """ Output a list of tuples(story, 1st continuation, 2nd continuation, label) """
    with open(dataset_path, encoding='utf_8') as f:
        f = csv.reader(f)
        output = []
        next(f) # skip the first line
        for line in tqdm(f):
            output.append((' '.join(line[1:5]), line[5], line[6], int(line[-1])-1))
    return output

thomwolf's avatar
thomwolf committed
67
68
69
70
71
def pre_process_datasets(encoded_datasets, input_len, cap_length, start_token, delimiter_token, clf_token):
    """ Pre-process datasets containing lists of tuples(story, 1st continuation, 2nd continuation, label)

        To Transformer inputs of shape (n_batch, n_alternative, length) comprising for each batch, continuation:
        input_ids[batch, alternative, :] = [start_token] + story[:cap_length] + [delimiter_token] + cont1[:cap_length] + [clf_token]
thomwolf's avatar
thomwolf committed
72
73
74
75
    """
    tensor_datasets = []
    for dataset in encoded_datasets:
        n_batch = len(dataset)
thomwolf's avatar
thomwolf committed
76
        input_ids = np.zeros((n_batch, 2, input_len), dtype=np.int64)
thomwolf's avatar
thomwolf committed
77
        mc_token_ids = np.zeros((n_batch, 2), dtype=np.int64)
thomwolf's avatar
thomwolf committed
78
        lm_labels = np.full((n_batch, 2, input_len), fill_value=-1, dtype=np.int64)
thomwolf's avatar
thomwolf committed
79
        mc_labels = np.zeros((n_batch,), dtype=np.int64)
thomwolf's avatar
thomwolf committed
80
        for i, (story, cont1, cont2, mc_label), in enumerate(dataset):
thomwolf's avatar
thomwolf committed
81
82
            with_cont1 = [start_token] + story[:cap_length] + [delimiter_token] + cont1[:cap_length] + [clf_token]
            with_cont2 = [start_token] + story[:cap_length] + [delimiter_token] + cont2[:cap_length] + [clf_token]
thomwolf's avatar
thomwolf committed
83
84
            input_ids[i, 0, :len(with_cont1)] = with_cont1
            input_ids[i, 1, :len(with_cont2)] = with_cont2
thomwolf's avatar
thomwolf committed
85
86
            mc_token_ids[i, 0] = len(with_cont1) - 1
            mc_token_ids[i, 1] = len(with_cont2) - 1
87
88
            lm_labels[i, 0, :len(with_cont1)] = with_cont1
            lm_labels[i, 1, :len(with_cont2)] = with_cont2
thomwolf's avatar
thomwolf committed
89
            mc_labels[i] = mc_label
thomwolf's avatar
thomwolf committed
90
        all_inputs = (input_ids, mc_token_ids, lm_labels, mc_labels)
thomwolf's avatar
thomwolf committed
91
92
93
94
95
96
97
        tensor_datasets.append(tuple(torch.tensor(t) for t in all_inputs))
    return tensor_datasets

def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--model_name', type=str, default='openai-gpt',
                        help='pretrained model name')
thomwolf's avatar
thomwolf committed
98
99
100
101
    parser.add_argument("--do_train", action='store_true', help="Whether to run training.")
    parser.add_argument("--do_eval", action='store_true', help="Whether to run eval on the dev set.")
    parser.add_argument("--output_dir", default=None, type=str, required=True,
                        help="The output directory where the model predictions and checkpoints will be written.")
thomwolf's avatar
thomwolf committed
102
103
    parser.add_argument('--train_dataset', type=str, default='')
    parser.add_argument('--eval_dataset', type=str, default='')
thomwolf's avatar
thomwolf committed
104
105
106
107
    parser.add_argument('--seed', type=int, default=42)
    parser.add_argument('--num_train_epochs', type=int, default=3)
    parser.add_argument('--train_batch_size', type=int, default=8)
    parser.add_argument('--eval_batch_size', type=int, default=16)
108
109
    parser.add_argument("--adam_epsilon", default=1e-8, type=float,
                        help="Epsilon for Adam optimizer.")
thomwolf's avatar
thomwolf committed
110
    parser.add_argument('--max_grad_norm', type=int, default=1)
111
112
113
114
115
116
    parser.add_argument("--max_steps", default=-1, type=int,
                        help="If > 0: set total number of training \
                        steps to perform. Override num_train_epochs.")
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
                        help="Number of updates steps to accumulate before\
                        performing a backward/update pass.")
thomwolf's avatar
thomwolf committed
117
    parser.add_argument('--learning_rate', type=float, default=6.25e-5)
118
119
    parser.add_argument("--warmup_steps", default=0, type=int,
                        help="Linear warmup over warmup_steps.")
thomwolf's avatar
thomwolf committed
120
121
    parser.add_argument('--lr_schedule', type=str, default='warmup_linear')
    parser.add_argument('--weight_decay', type=float, default=0.01)
thomwolf's avatar
thomwolf committed
122
    parser.add_argument('--lm_coef', type=float, default=0.9)
thomwolf's avatar
thomwolf committed
123
    parser.add_argument('--n_valid', type=int, default=374)
thomwolf's avatar
thomwolf committed
124

thomwolf's avatar
thomwolf committed
125
126
    parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
thomwolf's avatar
thomwolf committed
127
128
129
    args = parser.parse_args()
    print(args)

thomwolf's avatar
thomwolf committed
130
131
132
133
134
135
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()
thomwolf's avatar
thomwolf committed
136

thomwolf's avatar
thomwolf committed
137
138
139
140
141
142
143
144
145
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    n_gpu = torch.cuda.device_count()
    logger.info("device: {}, n_gpu {}".format(device, n_gpu))

thomwolf's avatar
thomwolf committed
146
147
148
149
150
151
    if not args.do_train and not args.do_eval:
        raise ValueError("At least one of `do_train` or `do_eval` must be True.")

    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

thomwolf's avatar
thomwolf committed
152
153
154
155
156
157
158
    # Load tokenizer and model
    # This loading functions also add new tokens and embeddings called `special tokens`
    # These new embeddings will be fine-tuned on the RocStories dataset
    special_tokens = ['_start_', '_delimiter_', '_classify_']
    tokenizer = OpenAIGPTTokenizer.from_pretrained(args.model_name, special_tokens=special_tokens)
    special_tokens_ids = list(tokenizer.convert_tokens_to_ids(token) for token in special_tokens)
    model = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name, num_special_tokens=len(special_tokens))
thomwolf's avatar
thomwolf committed
159
    model.to(device)
thomwolf's avatar
thomwolf committed
160
161

    # Load and encode the datasets
thomwolf's avatar
thomwolf committed
162
163
    if not args.train_dataset and not args.eval_dataset:
        roc_stories = cached_path(ROCSTORIES_URL)
thomwolf's avatar
thomwolf committed
164
165
166
167
168
169
170
    def tokenize_and_encode(obj):
        """ Tokenize and encode a nested object """
        if isinstance(obj, str):
            return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(obj))
        elif isinstance(obj, int):
            return obj
        return list(tokenize_and_encode(o) for o in obj)
thomwolf's avatar
thomwolf committed
171
172
    logger.info("Encoding dataset...")
    train_dataset = load_rocstories_dataset(args.train_dataset)
thomwolf's avatar
thomwolf committed
173
174
175
    eval_dataset = load_rocstories_dataset(args.eval_dataset)
    datasets = (train_dataset, eval_dataset)
    encoded_datasets = tokenize_and_encode(datasets)
thomwolf's avatar
thomwolf committed
176

Catalin Voss's avatar
Catalin Voss committed
177
    # Compute the max input length for the Transformer
thomwolf's avatar
thomwolf committed
178
179
    max_length = model.config.n_positions // 2 - 2
    input_length = max(len(story[:max_length]) + max(len(cont1[:max_length]), len(cont2[:max_length])) + 3  \
thomwolf's avatar
thomwolf committed
180
                           for dataset in encoded_datasets for story, cont1, cont2, _ in dataset)
thomwolf's avatar
thomwolf committed
181
    input_length = min(input_length, model.config.n_positions)  # Max size of input for the pre-trained model
thomwolf's avatar
thomwolf committed
182
183

    # Prepare inputs tensors and dataloaders
thomwolf's avatar
thomwolf committed
184
    tensor_datasets = pre_process_datasets(encoded_datasets, input_length, max_length, *special_tokens_ids)
thomwolf's avatar
thomwolf committed
185
186
187
188
189
190
191
192
193
194
195
    train_tensor_dataset, eval_tensor_dataset = tensor_datasets[0], tensor_datasets[1]

    train_data = TensorDataset(*train_tensor_dataset)
    train_sampler = RandomSampler(train_data)
    train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)

    eval_data = TensorDataset(*eval_tensor_dataset)
    eval_sampler = SequentialSampler(eval_data)
    eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)

    # Prepare optimizer
196
    if args.do_train:
197
198
199
200
201
202
203
204
        if args.max_steps > 0:
            t_total = args.max_steps
            args.num_train_epochs = args.max_steps //\
                (len(train_dataloader) // args.gradient_accumulation_steps) + 1
        else:
            t_total = len(train_dataloader)\
                // args.gradient_accumulation_steps * args.num_train_epochs

205
206
207
208
209
210
        param_optimizer = list(model.named_parameters())
        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [
            {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
            {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
            ]
211
212
        optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
        scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total)
thomwolf's avatar
thomwolf committed
213
214

    if args.do_train:
thomwolf's avatar
thomwolf committed
215
        nb_tr_steps, tr_loss, exp_average_loss = 0, 0, None
thomwolf's avatar
thomwolf committed
216
217
218
        model.train()
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
thomwolf's avatar
thomwolf committed
219
            nb_tr_steps = 0
thomwolf's avatar
thomwolf committed
220
221
            tqdm_bar = tqdm(train_dataloader, desc="Training")
            for step, batch in enumerate(tqdm_bar):
thomwolf's avatar
thomwolf committed
222
                batch = tuple(t.to(device) for t in batch)
thomwolf's avatar
thomwolf committed
223
224
                input_ids, mc_token_ids, lm_labels, mc_labels = batch
                losses = model(input_ids, mc_token_ids, lm_labels, mc_labels)
thomwolf's avatar
thomwolf committed
225
226
                loss = args.lm_coef * losses[0] + losses[1]
                loss.backward()
227
                scheduler.step()
thomwolf's avatar
thomwolf committed
228
                optimizer.step()
229
                optimizer.zero_grad()
thomwolf's avatar
thomwolf committed
230
                tr_loss += loss.item()
thomwolf's avatar
thomwolf committed
231
                exp_average_loss = loss.item() if exp_average_loss is None else 0.7*exp_average_loss+0.3*loss.item()
thomwolf's avatar
thomwolf committed
232
                nb_tr_steps += 1
233
                tqdm_bar.desc = "Training loss: {:.2e} lr: {:.2e}".format(exp_average_loss, scheduler.get_lr()[0])
thomwolf's avatar
thomwolf committed
234
235
236

    # Save a trained model
    if args.do_train:
237
        # Save a trained model, configuration and tokenizer
thomwolf's avatar
thomwolf committed
238
        model_to_save = model.module if hasattr(model, 'module') else model  # Only save the model it-self
239
240
241
242
243

        # If we save using the predefined names, we can load using `from_pretrained`
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)

thomwolf's avatar
thomwolf committed
244
        torch.save(model_to_save.state_dict(), output_model_file)
245
246
        model_to_save.config.to_json_file(output_config_file)
        tokenizer.save_vocabulary(args.output_dir)
thomwolf's avatar
thomwolf committed
247

248
249
250
        # Load a trained model and vocabulary that you have fine-tuned
        model = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir)
        tokenizer = OpenAIGPTTokenizer.from_pretrained(args.output_dir)
thomwolf's avatar
thomwolf committed
251
        model.to(device)
thomwolf's avatar
thomwolf committed
252
253
254
255
256
257
258

    if args.do_eval:
        model.eval()
        eval_loss, eval_accuracy = 0, 0
        nb_eval_steps, nb_eval_examples = 0, 0
        for batch in tqdm(eval_dataloader, desc="Evaluating"):
            batch = tuple(t.to(device) for t in batch)
thomwolf's avatar
thomwolf committed
259
            input_ids, mc_token_ids, lm_labels, mc_labels = batch
thomwolf's avatar
thomwolf committed
260
            with torch.no_grad():
261
               _, mc_loss, _, mc_logits = model(input_ids, mc_token_ids, lm_labels, mc_labels)
thomwolf's avatar
thomwolf committed
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288

            mc_logits = mc_logits.detach().cpu().numpy()
            mc_labels = mc_labels.to('cpu').numpy()
            tmp_eval_accuracy = accuracy(mc_logits, mc_labels)

            eval_loss += mc_loss.mean().item()
            eval_accuracy += tmp_eval_accuracy

            nb_eval_examples += input_ids.size(0)
            nb_eval_steps += 1

        eval_loss = eval_loss / nb_eval_steps
        eval_accuracy = eval_accuracy / nb_eval_examples
        train_loss = tr_loss/nb_tr_steps if args.do_train else None
        result = {'eval_loss': eval_loss,
                  'eval_accuracy': eval_accuracy,
                  'train_loss': train_loss}

        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))

if __name__ == '__main__':
    main()