"vscode:/vscode.git/clone" did not exist on "bec2927ba8fd9123c8b206a4334c6582035d1c87"
modeling_xlm.py 43.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# coding=utf-8
# Copyright 2019-present, Facebook, Inc and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch XLM model.
"""
from __future__ import absolute_import, division, print_function, unicode_literals

import json
import logging
import math
import sys
from io import open

import itertools
import numpy as np

import torch
from torch import nn
from torch.nn import functional as F
from torch.nn import CrossEntropyLoss, MSELoss

thomwolf's avatar
thomwolf committed
33
from .modeling_utils import (PretrainedConfig, PreTrainedModel, add_start_docstrings,
34
                             prune_linear_layer, SequenceSummary, SQuADHead)
35
36
37

logger = logging.getLogger(__name__)

38
XLM_PRETRAINED_MODEL_ARCHIVE_MAP = {
39
    'xlm-mlm-en-2048': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-en-2048-pytorch_model.bin",
40
41
42
43
44
    'xlm-mlm-ende-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-ende-1024-pytorch_model.bin",
    'xlm-mlm-enfr-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enfr-1024-pytorch_model.bin",
    'xlm-mlm-enro-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enro-1024-pytorch_model.bin",
    'xlm-mlm-tlm-xnli15-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-tlm-xnli15-1024-pytorch_model.bin",
    'xlm-mlm-xnli15-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-xnli15-1024-pytorch_model.bin",
45
46
    'xlm-clm-enfr-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-clm-enfr-1024-pytorch_model.bin",
    'xlm-clm-ende-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-clm-ende-1024-pytorch_model.bin",
47
}
48
XLM_PRETRAINED_CONFIG_ARCHIVE_MAP = {
49
    'xlm-mlm-en-2048': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-en-2048-config.json",
50
51
52
53
54
55
56
    'xlm-mlm-ende-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-ende-1024-config.json",
    'xlm-mlm-enfr-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enfr-1024-configl.json",
    'xlm-mlm-enro-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enro-1024-config.json",
    'xlm-mlm-tlm-xnli15-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-tlm-xnli15-1024-config.json",
    'xlm-mlm-xnli15-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-xnli15-1024-config.json",
    'xlm-clm-enfr-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-clm-enfr-1024-config.json",
    'xlm-clm-ende-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-clm-ende-1024-config.json",
57
58
59
60
61
}


class XLMConfig(PretrainedConfig):
    """Configuration class to store the configuration of a `XLMModel`.
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

    Args:
        vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `XLMModel`.
        d_model: Size of the encoder layers and the pooler layer.
        n_layer: Number of hidden layers in the Transformer encoder.
        n_head: Number of attention heads for each attention layer in
            the Transformer encoder.
        d_inner: The size of the "intermediate" (i.e., feed-forward)
            layer in the Transformer encoder.
        ff_activation: The non-linear activation function (function or string) in the
            encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
        untie_r: untie relative position biases
        attn_type: 'bi' for XLM, 'uni' for Transformer-XL

        dropout: The dropout probabilitiy for all fully connected
            layers in the embeddings, encoder, and pooler.
        dropatt: The dropout ratio for the attention
            probabilities.
        max_position_embeddings: The maximum sequence length that this model might
            ever be used with. Typically set this to something large just in case
            (e.g., 512 or 1024 or 2048).
        initializer_range: The sttdev of the truncated_normal_initializer for
            initializing all weight matrices.
        layer_norm_eps: The epsilon used by LayerNorm.

        dropout: float, dropout rate.
        dropatt: float, dropout rate on attention probabilities.
        init: str, the initialization scheme, either "normal" or "uniform".
        init_range: float, initialize the parameters with a uniform distribution
            in [-init_range, init_range]. Only effective when init="uniform".
        init_std: float, initialize the parameters with a normal distribution
            with mean 0 and stddev init_std. Only effective when init="normal".
        mem_len: int, the number of tokens to cache.
        reuse_len: int, the number of tokens in the currect batch to be cached
            and reused in the future.
        bi_data: bool, whether to use bidirectional input pipeline.
            Usually set to True during pretraining and False during finetuning.
        clamp_len: int, clamp all relative distances larger than clamp_len.
            -1 means no clamping.
        same_length: bool, whether to use the same attention length for each token.
102
    """
103
    pretrained_config_archive_map = XLM_PRETRAINED_CONFIG_ARCHIVE_MAP
104
105

    def __init__(self,
thomwolf's avatar
thomwolf committed
106
                 vocab_size_or_config_json_file=30145,
thomwolf's avatar
xlm  
thomwolf committed
107
108
109
110
111
112
113
                 emb_dim=2048,
                 n_layers=12,
                 n_heads=16,
                 dropout=0.1,
                 attention_dropout=0.1,
                 gelu_activation=True,
                 sinusoidal_embeddings=False,
thomwolf's avatar
thomwolf committed
114
                 causal=False,
thomwolf's avatar
xlm  
thomwolf committed
115
116
                 asm=False,
                 n_langs=1,
117
                 max_position_embeddings=512,
thomwolf's avatar
thomwolf committed
118
                 embed_init_std=2048 ** -0.5,
thomwolf's avatar
thomwolf committed
119
                 layer_norm_eps=1e-12,
thomwolf's avatar
thomwolf committed
120
121
122
123
124
125
126
                 init_std=0.02,
                 bos_index=0,
                 eos_index=1,
                 pad_index=2,
                 unk_index=3,
                 mask_index=5,
                 is_encoder=True,
thomwolf's avatar
thomwolf committed
127
128
129

                 finetuning_task=None,
                 num_labels=2,
130
                 summary_type='first',
thomwolf's avatar
thomwolf committed
131
                 summary_use_proj=True,
132
133
134
                 summary_activation=None,
                 summary_proj_to_labels=True,
                 summary_first_dropout=0.1,
thomwolf's avatar
thomwolf committed
135
136
                 start_n_top=5,
                 end_n_top=5,
thomwolf's avatar
xlm  
thomwolf committed
137
                 **kwargs):
138
139
        """Constructs XLMConfig.
        """
thomwolf's avatar
xlm  
thomwolf committed
140
141
        super(XLMConfig, self).__init__(**kwargs)

142
143
144
145
146
147
148
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
            with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
thomwolf's avatar
xlm  
thomwolf committed
149
150
151
152
153
154
155
156
            self.n_words = vocab_size_or_config_json_file
            self.emb_dim = emb_dim
            self.n_layers = n_layers
            self.n_heads = n_heads
            self.dropout = dropout
            self.attention_dropout = attention_dropout
            self.gelu_activation = gelu_activation
            self.sinusoidal_embeddings = sinusoidal_embeddings
thomwolf's avatar
thomwolf committed
157
            self.causal = causal
thomwolf's avatar
xlm  
thomwolf committed
158
159
            self.asm = asm
            self.n_langs = n_langs
thomwolf's avatar
thomwolf committed
160
            self.layer_norm_eps = layer_norm_eps
thomwolf's avatar
thomwolf committed
161
162
163
164
165
166
            self.bos_index = bos_index
            self.eos_index = eos_index
            self.pad_index = pad_index
            self.unk_index = unk_index
            self.mask_index = mask_index
            self.is_encoder = is_encoder
167
            self.max_position_embeddings = max_position_embeddings
thomwolf's avatar
thomwolf committed
168
169
            self.embed_init_std = embed_init_std
            self.init_std = init_std
thomwolf's avatar
thomwolf committed
170
171
172
173
174
            self.finetuning_task = finetuning_task
            self.num_labels = num_labels
            self.summary_type = summary_type
            self.summary_use_proj = summary_use_proj
            self.summary_activation = summary_activation
175
176
            self.summary_proj_to_labels = summary_proj_to_labels
            self.summary_first_dropout = summary_first_dropout
thomwolf's avatar
thomwolf committed
177
178
            self.start_n_top = start_n_top
            self.end_n_top = end_n_top
179
180
181
182
        else:
            raise ValueError("First argument must be either a vocabulary size (int)"
                             "or the path to a pretrained model config file (str)")

thomwolf's avatar
xlm  
thomwolf committed
183
    @property
thomwolf's avatar
thomwolf committed
184
185
    def vocab_size(self):
        return self.n_words
thomwolf's avatar
xlm  
thomwolf committed
186

thomwolf's avatar
thomwolf committed
187
188
189
190
    @vocab_size.setter
    def vocab_size(self, value):
        self.n_words = value

thomwolf's avatar
xlm  
thomwolf committed
191
192
193
194
195
196
197
198
199
200
201
202
    @property
    def hidden_size(self):
        return self.emb_dim

    @property
    def num_attention_heads(self):
        return self.n_heads

    @property
    def num_hidden_layers(self):
        return self.n_layers

203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

def create_sinusoidal_embeddings(n_pos, dim, out):
    position_enc = np.array([
        [pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)]
        for pos in range(n_pos)
    ])
    out[:, 0::2] = torch.FloatTensor(np.sin(position_enc[:, 0::2]))
    out[:, 1::2] = torch.FloatTensor(np.cos(position_enc[:, 1::2]))
    out.detach_()
    out.requires_grad = False


def gelu(x):
    """
    GELU activation
    https://arxiv.org/abs/1606.08415
    https://github.com/huggingface/pytorch-openai-transformer-lm/blob/master/model_pytorch.py#L14
thomwolf's avatar
thomwolf committed
220
    https://github.com/huggingface/pytorch-transformers/blob/master/modeling.py
221
222
223
224
225
    """
    # return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
    return 0.5 * x * (1.0 + torch.erf(x / math.sqrt(2.0)))


thomwolf's avatar
thomwolf committed
226
def get_masks(slen, lengths, causal, padding_mask=None):
227
228
229
230
    """
    Generate hidden states mask, and optionally an attention mask.
    """
    bs = lengths.size(0)
thomwolf's avatar
thomwolf committed
231
232
233
234
235
236
    if padding_mask is not None:
        mask = padding_mask
    else:
        assert lengths.max().item() <= slen
        alen = torch.arange(slen, dtype=torch.long, device=lengths.device)
        mask = alen < lengths[:, None]
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

    # attention mask is the same as mask, or triangular inferior attention (causal)
    if causal:
        attn_mask = alen[None, None, :].repeat(bs, slen, 1) <= alen[None, :, None]
    else:
        attn_mask = mask

    # sanity check
    assert mask.size() == (bs, slen)
    assert causal is False or attn_mask.size() == (bs, slen, slen)

    return mask, attn_mask


class MultiHeadAttention(nn.Module):

    NEW_ID = itertools.count()

thomwolf's avatar
thomwolf committed
255
    def __init__(self, n_heads, dim, config):
thomwolf's avatar
thomwolf committed
256
        super(MultiHeadAttention, self).__init__()
257
        self.layer_id = next(MultiHeadAttention.NEW_ID)
thomwolf's avatar
thomwolf committed
258
        self.output_attentions = config.output_attentions
259
260
        self.dim = dim
        self.n_heads = n_heads
thomwolf's avatar
thomwolf committed
261
        self.dropout = config.attention_dropout
262
263
        assert self.dim % self.n_heads == 0

thomwolf's avatar
thomwolf committed
264
265
266
267
        self.q_lin = nn.Linear(dim, dim)
        self.k_lin = nn.Linear(dim, dim)
        self.v_lin = nn.Linear(dim, dim)
        self.out_lin = nn.Linear(dim, dim)
268

thomwolf's avatar
thomwolf committed
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
    def prune_heads(self, heads):
        attention_head_size = self.dim // self.n_heads
        if len(heads) == 0:
            return
        mask = torch.ones(self.n_heads, attention_head_size)
        for head in heads:
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
        # Prune linear layers
        self.q_lin = prune_linear_layer(self.q_lin, index)
        self.k_lin = prune_linear_layer(self.k_lin, index)
        self.v_lin = prune_linear_layer(self.v_lin, index)
        self.out_lin = prune_linear_layer(self.out_lin, index, dim=1)
        # Update hyper params
        self.n_heads = self.n_heads - len(heads)
        self.dim = attention_head_size * self.n_heads

thomwolf's avatar
thomwolf committed
287
    def forward(self, input, mask, kv=None, cache=None, head_mask=None):
288
289
290
291
292
293
294
295
296
297
        """
        Self-attention (if kv is None) or attention over source sentence (provided by kv).
        """
        # Input is (bs, qlen, dim)
        # Mask is (bs, klen) (non-causal) or (bs, klen, klen)
        bs, qlen, dim = input.size()
        if kv is None:
            klen = qlen if cache is None else cache['slen'] + qlen
        else:
            klen = kv.size(1)
thomwolf's avatar
thomwolf committed
298
        # assert dim == self.dim, 'Dimensions do not match: %s input vs %s configured' % (dim, self.dim)
299
        n_heads = self.n_heads
thomwolf's avatar
thomwolf committed
300
        dim_per_head = self.dim // n_heads
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
        mask_reshape = (bs, 1, qlen, klen) if mask.dim() == 3 else (bs, 1, 1, klen)

        def shape(x):
            """  projection """
            return x.view(bs, -1, self.n_heads, dim_per_head).transpose(1, 2)

        def unshape(x):
            """  compute context """
            return x.transpose(1, 2).contiguous().view(bs, -1, self.n_heads * dim_per_head)

        q = shape(self.q_lin(input))                                          # (bs, n_heads, qlen, dim_per_head)
        if kv is None:
            k = shape(self.k_lin(input))                                      # (bs, n_heads, qlen, dim_per_head)
            v = shape(self.v_lin(input))                                      # (bs, n_heads, qlen, dim_per_head)
        elif cache is None or self.layer_id not in cache:
            k = v = kv
            k = shape(self.k_lin(k))                                          # (bs, n_heads, qlen, dim_per_head)
            v = shape(self.v_lin(v))                                          # (bs, n_heads, qlen, dim_per_head)

        if cache is not None:
            if self.layer_id in cache:
                if kv is None:
                    k_, v_ = cache[self.layer_id]
                    k = torch.cat([k_, k], dim=2)                             # (bs, n_heads, klen, dim_per_head)
                    v = torch.cat([v_, v], dim=2)                             # (bs, n_heads, klen, dim_per_head)
                else:
                    k, v = cache[self.layer_id]
            cache[self.layer_id] = (k, v)

        q = q / math.sqrt(dim_per_head)                                       # (bs, n_heads, qlen, dim_per_head)
        scores = torch.matmul(q, k.transpose(2, 3))                           # (bs, n_heads, qlen, klen)
        mask = (mask == 0).view(mask_reshape).expand_as(scores)               # (bs, n_heads, qlen, klen)
        scores.masked_fill_(mask, -float('inf'))                              # (bs, n_heads, qlen, klen)

        weights = F.softmax(scores.float(), dim=-1).type_as(scores)           # (bs, n_heads, qlen, klen)
        weights = F.dropout(weights, p=self.dropout, training=self.training)  # (bs, n_heads, qlen, klen)
thomwolf's avatar
thomwolf committed
337
338
339
340
341

        # Mask heads if we want to
        if head_mask is not None:
            weights = weights * head_mask

342
343
344
        context = torch.matmul(weights, v)                                    # (bs, n_heads, qlen, dim_per_head)
        context = unshape(context)                                            # (bs, qlen, dim)

thomwolf's avatar
xlm  
thomwolf committed
345
346
        outputs = (self.out_lin(context),)
        if self.output_attentions:
thomwolf's avatar
thomwolf committed
347
            outputs = outputs + (weights,)
thomwolf's avatar
xlm  
thomwolf committed
348
        return outputs
349
350
351
352


class TransformerFFN(nn.Module):

thomwolf's avatar
thomwolf committed
353
    def __init__(self, in_dim, dim_hidden, out_dim, config):
thomwolf's avatar
thomwolf committed
354
        super(TransformerFFN, self).__init__()
thomwolf's avatar
thomwolf committed
355
        self.dropout = config.dropout
thomwolf's avatar
thomwolf committed
356
357
        self.lin1 = nn.Linear(in_dim, dim_hidden)
        self.lin2 = nn.Linear(dim_hidden, out_dim)
thomwolf's avatar
thomwolf committed
358
        self.act = gelu if config.gelu_activation else F.relu
359
360
361
362
363
364
365
366
367

    def forward(self, input):
        x = self.lin1(input)
        x = self.act(x)
        x = self.lin2(x)
        x = F.dropout(x, p=self.dropout, training=self.training)
        return x


368
class XLMPreTrainedModel(PreTrainedModel):
369
370
371
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
372
    config_class = XLMConfig
373
    pretrained_model_archive_map = XLM_PRETRAINED_MODEL_ARCHIVE_MAP
374
    load_tf_weights = None
thomwolf's avatar
thomwolf committed
375
    base_model_prefix = "transformer"
376
377
378

    def __init__(self, *inputs, **kwargs):
        super(XLMPreTrainedModel, self).__init__(*inputs, **kwargs)
379
380

    def init_weights(self, module):
thomwolf's avatar
thomwolf committed
381
382
383
384
385
386
387
388
389
        """ Initialize the weights. """
        if isinstance(module, nn.Embedding):
            if self.config is not None and self.config.embed_init_std is not None:
                nn.init.normal_(module.weight, mean=0, std=self.config.embed_init_std)
        if isinstance(module, nn.Linear):
            if self.config is not None and self.config.init_std is not None:
                nn.init.normal_(module.weight, mean=0, std=self.config.init_std)
                if hasattr(module, 'bias') and module.bias is not None:
                    nn.init.constant_(module.bias, 0.)
thomwolf's avatar
thomwolf committed
390
        if isinstance(module, nn.LayerNorm):
391
392
393
394
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)


thomwolf's avatar
thomwolf committed
395
396
397
XLM_START_DOCSTRING = r"""    The XLM model was proposed in
    `Cross-lingual Language Model Pretraining`_
    by Guillaume Lample*, Alexis Conneau*. It's a transformer pre-trained using one of the following objectives:
398

thomwolf's avatar
thomwolf committed
399
400
401
        - a causal language modeling (CLM) objective (next token prediction),
        - a masked language modeling (MLM) objective (Bert-like), or
        - a Translation Language Modeling (TLM) object (extension of Bert's MLM to multiple language inputs)
thomwolf's avatar
thomwolf committed
402

thomwolf's avatar
thomwolf committed
403
    Original code can be found `here`_.
thomwolf's avatar
thomwolf committed
404

thomwolf's avatar
thomwolf committed
405
406
    This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and
    refer to the PyTorch documentation for all matter related to general usage and behavior.
thomwolf's avatar
thomwolf committed
407

thomwolf's avatar
thomwolf committed
408
409
    .. _`Cross-lingual Language Model Pretraining`:
        https://arxiv.org/abs/1901.07291
thomwolf's avatar
thomwolf committed
410

thomwolf's avatar
thomwolf committed
411
412
    .. _`torch.nn.Module`:
        https://pytorch.org/docs/stable/nn.html#module
thomwolf's avatar
thomwolf committed
413

thomwolf's avatar
thomwolf committed
414
415
416
417
418
419
    .. _`here`:
        https://github.com/facebookresearch/XLM

    Parameters:
        config (:class:`~pytorch_transformers.XLMConfig`): Model configuration class with all the parameters of the model.
"""
420

thomwolf's avatar
thomwolf committed
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
XLM_INPUTS_DOCSTRING = r"""
    Inputs:
        **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of input sequence tokens in the vocabulary.
            Indices can be obtained using :class:`pytorch_transformers.XLMTokenizer`.
            See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and
            :func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
        **position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of positions of each input sequence tokens in the position embeddings.
            Selected in the range ``[0, config.max_position_embeddings - 1[``.
        **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            A parallel sequence of tokens (can be used to indicate various portions of the inputs).
            The embeddings from these tokens will be summed with the respective token embeddings.
            Indices are selected in the vocabulary (unlike BERT which has a specific vocabulary for segment indices).
        **langs**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            A parallel sequence of tokens to be used to indicate the language of each token in the input.
            Indices are selected in the pre-trained language vocabulary,
            i.e. in the range ``[0, config.n_langs - 1[``.
        **attention_mask**: (`optional`) ``torch.Tensor`` of shape ``(batch_size, sequence_length)``:
            Mask to avoid performing attention on padding token indices.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
        **lengths**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Length of each sentence that can be used to avoid performing attention on padding token indices.
            You can also use `attention_mask` for the same result (see above), kept here for compatbility.
            Indices selected in ``[0, ..., input_ids.size(-1)]``:
        **cache**:
            dictionary with ``torch.FloatTensor`` that contains pre-computed
            hidden-states (key and values in the attention blocks) as computed by the model
            (see `cache` output below). Can be used to speed up sequential decoding.
            The dictionary object will be modified in-place during the forward pass to add newly computed hidden-states.
        **head_mask**: (`optional`) ``torch.Tensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
            Mask to nullify selected heads of the self-attention modules.
            Mask values selected in ``[0, 1]``:
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
"""

@add_start_docstrings("The bare XLM Model transformer outputing raw hidden-states without any specific head on top.",
                      XLM_START_DOCSTRING, XLM_INPUTS_DOCSTRING)
class XLMModel(XLMPreTrainedModel):
    r"""
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
            Sequence of hidden-states at the last layer of the model.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.

    Examples::

        >>> config = XLMConfig.from_pretrained('xlm-mlm-en-2048')
        >>> tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
        >>> model = XLMModel(config)
        >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        >>> outputs = model(input_ids)
        >>> last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple

    """
483
484
485
486
487
488
    ATTRIBUTES = ['encoder', 'eos_index', 'pad_index',  # 'with_output', 
                  'n_langs', 'n_words', 'dim', 'n_layers', 'n_heads', 
                  'hidden_dim', 'dropout', 'attention_dropout', 'asm',
                  'asm_cutoffs', 'asm_div_value']

    def __init__(self, config):  #, dico, is_encoder, with_output):
thomwolf's avatar
xlm  
thomwolf committed
489
490
491
        super(XLMModel, self).__init__(config)
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states
492
493

        # encoder / decoder, output layer
thomwolf's avatar
thomwolf committed
494
495
496
497
        self.is_encoder = config.is_encoder
        self.is_decoder = not config.is_encoder
        if self.is_decoder:
            raise NotImplementedError("Currently XLM can only be used as an encoder")
498
        # self.with_output = with_output
thomwolf's avatar
xlm  
thomwolf committed
499
        self.causal = config.causal
500
501

        # dictionary / languages
thomwolf's avatar
xlm  
thomwolf committed
502
503
504
505
        self.n_langs = config.n_langs
        self.n_words = config.n_words
        self.eos_index = config.eos_index
        self.pad_index = config.pad_index
506
        # self.dico = dico
thomwolf's avatar
thomwolf committed
507
508
        # self.id2lang = config.id2lang
        # self.lang2id = config.lang2id
509
        # assert len(self.dico) == self.n_words
thomwolf's avatar
thomwolf committed
510
        # assert len(self.id2lang) == len(self.lang2id) == self.n_langs
511
512

        # model parameters
thomwolf's avatar
xlm  
thomwolf committed
513
        self.dim = config.emb_dim       # 512 by default
514
        self.hidden_dim = self.dim * 4  # 2048 by default
thomwolf's avatar
xlm  
thomwolf committed
515
516
517
518
        self.n_heads = config.n_heads   # 8 by default
        self.n_layers = config.n_layers
        self.dropout = config.dropout
        self.attention_dropout = config.attention_dropout
519
520
521
        assert self.dim % self.n_heads == 0, 'transformer dim must be a multiple of n_heads'

        # embeddings
thomwolf's avatar
thomwolf committed
522
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, self.dim)
thomwolf's avatar
xlm  
thomwolf committed
523
524
525
        if config.sinusoidal_embeddings:
            create_sinusoidal_embeddings(config.max_position_embeddings, self.dim, out=self.position_embeddings.weight)
        if config.n_langs > 1:
thomwolf's avatar
thomwolf committed
526
527
528
            self.lang_embeddings = nn.Embedding(self.n_langs, self.dim)
        self.embeddings = nn.Embedding(self.n_words, self.dim, padding_idx=self.pad_index)
        self.layer_norm_emb = nn.LayerNorm(self.dim, eps=config.layer_norm_eps)
529
530
531
532
533
534

        # transformer layers
        self.attentions = nn.ModuleList()
        self.layer_norm1 = nn.ModuleList()
        self.ffns = nn.ModuleList()
        self.layer_norm2 = nn.ModuleList()
thomwolf's avatar
thomwolf committed
535
536
537
        # if self.is_decoder:
        #     self.layer_norm15 = nn.ModuleList()
        #     self.encoder_attn = nn.ModuleList()
538
539

        for _ in range(self.n_layers):
thomwolf's avatar
thomwolf committed
540
            self.attentions.append(MultiHeadAttention(self.n_heads, self.dim, config=config))
thomwolf's avatar
thomwolf committed
541
            self.layer_norm1.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps))
thomwolf's avatar
thomwolf committed
542
            # if self.is_decoder:
thomwolf's avatar
thomwolf committed
543
            #     self.layer_norm15.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps))
thomwolf's avatar
thomwolf committed
544
545
            #     self.encoder_attn.append(MultiHeadAttention(self.n_heads, self.dim, dropout=self.attention_dropout))
            self.ffns.append(TransformerFFN(self.dim, self.hidden_dim, self.dim, config=config))
thomwolf's avatar
thomwolf committed
546
547
548
            self.layer_norm2.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps))

        self.apply(self.init_weights)
549

thomwolf's avatar
thomwolf committed
550
551
    def _resize_token_embeddings(self, new_num_tokens):
        self.embeddings = self._get_resized_embeddings(self.embeddings, new_num_tokens)
thomwolf's avatar
thomwolf committed
552
        return self.embeddings
thomwolf's avatar
thomwolf committed
553

thomwolf's avatar
thomwolf committed
554
555
556
557
558
559
560
561
    def _prune_heads(self, heads_to_prune):
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
            See base class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.attentions[layer].prune_heads(heads)

thomwolf's avatar
thomwolf committed
562
    def forward(self, input_ids, lengths=None, position_ids=None, langs=None,
thomwolf's avatar
thomwolf committed
563
564
                token_type_ids=None, attention_mask=None, cache=None, head_mask=None):  # src_enc=None, src_len=None, 
        if lengths is None:
thomwolf's avatar
thomwolf committed
565
            lengths = (input_ids != self.pad_index).sum(dim=1).long()
thomwolf's avatar
xlm  
thomwolf committed
566
        # mask = input_ids != self.pad_index
567
568

        # check inputs
thomwolf's avatar
xlm  
thomwolf committed
569
        bs, slen = input_ids.size()
570
571
        assert lengths.size(0) == bs
        assert lengths.max().item() <= slen
thomwolf's avatar
xlm  
thomwolf committed
572
        # input_ids = input_ids.transpose(0, 1)  # batch size as dimension 0
thomwolf's avatar
thomwolf committed
573
574
575
576
        # assert (src_enc is None) == (src_len is None)
        # if src_enc is not None:
        #     assert self.is_decoder
        #     assert src_enc.size(0) == bs
577
578

        # generate masks
thomwolf's avatar
thomwolf committed
579
        mask, attn_mask = get_masks(slen, lengths, self.causal, padding_mask=attention_mask)
thomwolf's avatar
thomwolf committed
580
581
        # if self.is_decoder and src_enc is not None:
        #     src_mask = torch.arange(src_len.max(), dtype=torch.long, device=lengths.device) < src_len[:, None]
582

thomwolf's avatar
thomwolf committed
583
584
585
586
        # position_ids
        if position_ids is None:
            position_ids = input_ids.new((slen,)).long()
            position_ids = torch.arange(slen, out=position_ids).unsqueeze(0)
587
        else:
thomwolf's avatar
thomwolf committed
588
589
            assert position_ids.size() == (bs, slen)  # (slen, bs)
            # position_ids = position_ids.transpose(0, 1)
590
591
592

        # langs
        if langs is not None:
thomwolf's avatar
thomwolf committed
593
594
            assert langs.size() == (bs, slen)  # (slen, bs)
            # langs = langs.transpose(0, 1)
595

thomwolf's avatar
thomwolf committed
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x qlen x klen]
        if head_mask is not None:
            if head_mask.dim() == 1:
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
                head_mask = head_mask.expand(self.n_layers, -1, -1, -1, -1)
            elif head_mask.dim() == 2:
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
        else:
            head_mask = [None] * self.n_layers

611
612
613
        # do not recompute cached elements
        if cache is not None:
            _slen = slen - cache['slen']
thomwolf's avatar
xlm  
thomwolf committed
614
            input_ids = input_ids[:, -_slen:]
thomwolf's avatar
thomwolf committed
615
            position_ids = position_ids[:, -_slen:]
616
617
618
619
620
621
            if langs is not None:
                langs = langs[:, -_slen:]
            mask = mask[:, -_slen:]
            attn_mask = attn_mask[:, -_slen:]

        # embeddings
thomwolf's avatar
xlm  
thomwolf committed
622
        tensor = self.embeddings(input_ids)
thomwolf's avatar
thomwolf committed
623
        tensor = tensor + self.position_embeddings(position_ids).expand_as(tensor)
624
625
        if langs is not None:
            tensor = tensor + self.lang_embeddings(langs)
thomwolf's avatar
thomwolf committed
626
627
        if token_type_ids is not None:
            tensor = tensor + self.embeddings(token_type_ids)
628
629
630
631
632
        tensor = self.layer_norm_emb(tensor)
        tensor = F.dropout(tensor, p=self.dropout, training=self.training)
        tensor *= mask.unsqueeze(-1).to(tensor.dtype)

        # transformer layers
thomwolf's avatar
thomwolf committed
633
634
        hidden_states = ()
        attentions = ()
635
        for i in range(self.n_layers):
thomwolf's avatar
thomwolf committed
636
            if self.output_hidden_states:
thomwolf's avatar
thomwolf committed
637
                hidden_states = hidden_states + (tensor,)
638
639

            # self attention
thomwolf's avatar
thomwolf committed
640
641
642
            attn_outputs = self.attentions[i](tensor, attn_mask, cache=cache, head_mask=head_mask[i])
            attn = attn_outputs[0]
            if self.output_attentions:
thomwolf's avatar
thomwolf committed
643
                attentions = attentions + (attn_outputs[1],)
644
645
646
647
648
            attn = F.dropout(attn, p=self.dropout, training=self.training)
            tensor = tensor + attn
            tensor = self.layer_norm1[i](tensor)

            # encoder attention (for decoder only)
thomwolf's avatar
thomwolf committed
649
650
651
652
653
            # if self.is_decoder and src_enc is not None:
            #     attn = self.encoder_attn[i](tensor, src_mask, kv=src_enc, cache=cache)
            #     attn = F.dropout(attn, p=self.dropout, training=self.training)
            #     tensor = tensor + attn
            #     tensor = self.layer_norm15[i](tensor)
654
655
656
657
658
659

            # FFN
            tensor = tensor + self.ffns[i](tensor)
            tensor = self.layer_norm2[i](tensor)
            tensor *= mask.unsqueeze(-1).to(tensor.dtype)

thomwolf's avatar
thomwolf committed
660
661
        # Add last hidden state
        if self.output_hidden_states:
thomwolf's avatar
thomwolf committed
662
            hidden_states = hidden_states + (tensor,)
thomwolf's avatar
thomwolf committed
663

664
665
666
667
668
        # update cache length
        if cache is not None:
            cache['slen'] += tensor.size(1)

        # move back sequence length to dimension 0
thomwolf's avatar
thomwolf committed
669
        # tensor = tensor.transpose(0, 1)
670

thomwolf's avatar
thomwolf committed
671
        outputs = (tensor,)
672
        if self.output_hidden_states:
thomwolf's avatar
thomwolf committed
673
            outputs = outputs + (hidden_states,)
thomwolf's avatar
thomwolf committed
674
        if self.output_attentions:
thomwolf's avatar
thomwolf committed
675
            outputs = outputs + (attentions,)
thomwolf's avatar
thomwolf committed
676
        return outputs  # outputs, (hidden_states), (attentions)
677
678
679
680
681
682


class XLMPredLayer(nn.Module):
    """
    Prediction layer (cross_entropy or adaptive_softmax).
    """
thomwolf's avatar
xlm  
thomwolf committed
683
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
684
        super(XLMPredLayer, self).__init__()
thomwolf's avatar
xlm  
thomwolf committed
685
686
687
688
        self.asm = config.asm
        self.n_words = config.n_words
        self.pad_index = config.pad_index
        dim = config.emb_dim
689

thomwolf's avatar
xlm  
thomwolf committed
690
        if config.asm is False:
thomwolf's avatar
thomwolf committed
691
            self.proj = nn.Linear(dim, config.n_words, bias=True)
692
693
694
        else:
            self.proj = nn.AdaptiveLogSoftmaxWithLoss(
                in_features=dim,
thomwolf's avatar
xlm  
thomwolf committed
695
696
697
                n_classes=config.n_words,
                cutoffs=config.asm_cutoffs,
                div_value=config.asm_div_value,
698
699
700
                head_bias=True,  # default is False
            )

thomwolf's avatar
thomwolf committed
701
702
    def forward(self, x, y=None):
        """ Compute the loss, and optionally the scores.
703
        """
thomwolf's avatar
thomwolf committed
704
        outputs = ()
705
706
        if self.asm is False:
            scores = self.proj(x).view(-1, self.n_words)
thomwolf's avatar
thomwolf committed
707
708
709
710
            outputs = (scores,) + outputs
            if y is not None:
                loss = F.cross_entropy(scores, y, reduction='elementwise_mean')
                outputs = (loss,) + outputs
711
        else:
thomwolf's avatar
thomwolf committed
712
713
714
715
716
            scores = self.proj.log_prob(x)
            outputs = (scores,) + outputs
            if y is not None:
                _, loss = self.proj(x, y)
                outputs = (loss,) + outputs
717

thomwolf's avatar
thomwolf committed
718
        return outputs
719

thomwolf's avatar
thomwolf committed
720

thomwolf's avatar
thomwolf committed
721
722
723
@add_start_docstrings("""The XLM Model transformer with a language modeling head on top
    (linear layer with weights tied to the input embeddings). """,
    XLM_START_DOCSTRING, XLM_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
724
class XLMWithLMHeadModel(XLMPreTrainedModel):
thomwolf's avatar
thomwolf committed
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
    r"""
        **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Labels for language modeling.
            Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids``
            Indices are selected in ``[-1, 0, ..., config.vocab_size]``
            All labels set to ``-1`` are ignored (masked), the loss is only
            computed for labels in ``[0, ..., config.vocab_size]``

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Language modeling loss.
        **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.

    Examples::

        >>> config = XLMConfig.from_pretrained('xlm-mlm-en-2048')
        >>> tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
        >>> model = XLMWithLMHeadModel(config)
        >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        >>> outputs = model(input_ids)
        >>> last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple
754

thomwolf's avatar
xlm  
thomwolf committed
755
756
    """
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
757
        super(XLMWithLMHeadModel, self).__init__(config)
thomwolf's avatar
xlm  
thomwolf committed
758
        self.transformer = XLMModel(config)
thomwolf's avatar
thomwolf committed
759
        self.pred_layer = XLMPredLayer(config)
760
761
762
763
764
765
766

        self.apply(self.init_weights)
        self.tie_weights()

    def tie_weights(self):
        """ Make sure we are sharing the embeddings
        """
thomwolf's avatar
thomwolf committed
767
        self._tie_or_clone_weights(self.pred_layer.proj, self.transformer.embeddings)
768

thomwolf's avatar
thomwolf committed
769
    def forward(self, input_ids, lengths=None, position_ids=None, langs=None, token_type_ids=None,
thomwolf's avatar
thomwolf committed
770
                attention_mask=None, cache=None, labels=None, head_mask=None):
thomwolf's avatar
thomwolf committed
771
        transformer_outputs = self.transformer(input_ids, lengths=lengths, position_ids=position_ids, token_type_ids=token_type_ids,
thomwolf's avatar
thomwolf committed
772
                                               langs=langs, attention_mask=attention_mask, cache=cache, head_mask=head_mask)
773

774
        output = transformer_outputs[0]
thomwolf's avatar
thomwolf committed
775
776
        outputs = self.pred_layer(output, labels)
        outputs = outputs + transformer_outputs[1:]  # Keep new_mems and attention/hidden states if they are here
777

778
        return outputs
779
780


thomwolf's avatar
thomwolf committed
781
782
783
@add_start_docstrings("""XLM Model with a sequence classification/regression head on top (a linear layer on top of
    the pooled output) e.g. for GLUE tasks. """,
    XLM_START_DOCSTRING, XLM_INPUTS_DOCSTRING)
784
class XLMForSequenceClassification(XLMPreTrainedModel):
thomwolf's avatar
thomwolf committed
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
    r"""
        **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for computing the sequence classification/regression loss.
            Indices should be in ``[0, ..., config.num_labels]``.
            If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss),
            If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy).

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Classification (or regression if config.num_labels==1) loss.
        **logits**: ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)``
            Classification (or regression if config.num_labels==1) scores (before SoftMax).
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.

    Examples::

        >>> config = XLMConfig.from_pretrained('xlm-mlm-en-2048')
        >>> tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
        >>> 
        >>> model = XLMForSequenceClassification(config)
        >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        >>> labels = torch.tensor([1]).unsqueeze(0)  # Batch size 1
        >>> outputs = model(input_ids, labels=labels)
        >>> loss, logits = outputs[:2]
815

816
    """
thomwolf's avatar
xlm  
thomwolf committed
817
    def __init__(self, config):
818
        super(XLMForSequenceClassification, self).__init__(config)
thomwolf's avatar
thomwolf committed
819
        self.num_labels = config.num_labels
820

thomwolf's avatar
xlm  
thomwolf committed
821
        self.transformer = XLMModel(config)
thomwolf's avatar
thomwolf committed
822
        self.sequence_summary = SequenceSummary(config)
thomwolf's avatar
thomwolf committed
823

824
825
        self.apply(self.init_weights)

thomwolf's avatar
thomwolf committed
826
    def forward(self, input_ids, lengths=None, position_ids=None, langs=None, token_type_ids=None,
thomwolf's avatar
thomwolf committed
827
                attention_mask=None, cache=None, labels=None, head_mask=None):
thomwolf's avatar
thomwolf committed
828
        transformer_outputs = self.transformer(input_ids, lengths=lengths, position_ids=position_ids, token_type_ids=token_type_ids,
thomwolf's avatar
thomwolf committed
829
                                               langs=langs, attention_mask=attention_mask, cache=cache, head_mask=head_mask)
830

831
        output = transformer_outputs[0]
thomwolf's avatar
thomwolf committed
832
        logits = self.sequence_summary(output)
833

thomwolf's avatar
thomwolf committed
834
        outputs = (logits,) + transformer_outputs[1:]  # Keep new_mems and attention/hidden states if they are here
835

836
837
838
839
840
841
842
843
        if labels is not None:
            if self.num_labels == 1:
                #  We are doing regression
                loss_fct = MSELoss()
                loss = loss_fct(logits.view(-1), labels.view(-1))
            else:
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
thomwolf's avatar
thomwolf committed
844
            outputs = (loss,) + outputs
845

846
        return outputs
847
848


thomwolf's avatar
thomwolf committed
849
850
851
@add_start_docstrings("""XLM Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of
    the hidden-states output to compute `span start logits` and `span end logits`). """,
    XLM_START_DOCSTRING, XLM_INPUTS_DOCSTRING)
852
class XLMForQuestionAnswering(XLMPreTrainedModel):
thomwolf's avatar
thomwolf committed
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
    r"""
        **start_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.
        **end_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.
        **is_impossible**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels whether a question has an answer or no answer (SQuAD 2.0)
        **cls_index**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for position (index) of the classification token to use as input for computing plausibility of the answer.
        **p_mask**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Optional mask of tokens which can't be in answers (e.g. [CLS], [PAD], ...) 

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
        **start_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)``
            Span-start scores (before SoftMax).
        **end_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)``
            Span-end scores (before SoftMax).
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.

    Examples::

        >>> config = XLMConfig.from_pretrained('xlm-mlm-en-2048')
        >>> tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
        >>> 
        >>> model = XLMForQuestionAnswering(config)
        >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        >>> start_positions = torch.tensor([1])
        >>> end_positions = torch.tensor([3])
        >>> outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
        >>> loss, start_scores, end_scores = outputs[:2]
895
896

    """
thomwolf's avatar
thomwolf committed
897
    def __init__(self, config):
898
        super(XLMForQuestionAnswering, self).__init__(config)
899

thomwolf's avatar
xlm  
thomwolf committed
900
        self.transformer = XLMModel(config)
thomwolf's avatar
thomwolf committed
901
        self.qa_outputs = SQuADHead(config)
thomwolf's avatar
xlm  
thomwolf committed
902

903
904
        self.apply(self.init_weights)

thomwolf's avatar
thomwolf committed
905
    def forward(self, input_ids, lengths=None, position_ids=None, langs=None, token_type_ids=None,
thomwolf's avatar
thomwolf committed
906
907
                attention_mask=None, cache=None, start_positions=None, end_positions=None,
                cls_index=None, is_impossible=None, p_mask=None, head_mask=None):
thomwolf's avatar
thomwolf committed
908
        transformer_outputs = self.transformer(input_ids, lengths=lengths, position_ids=position_ids, token_type_ids=token_type_ids,
thomwolf's avatar
thomwolf committed
909
                                               langs=langs, attention_mask=attention_mask, cache=cache, head_mask=head_mask)
910

911
        output = transformer_outputs[0]
thomwolf's avatar
thomwolf committed
912
913
914
915
916

        outputs = self.qa_outputs(output, start_positions=start_positions, end_positions=end_positions,
                                  cls_index=cls_index, is_impossible=is_impossible, p_mask=p_mask)

        outputs = outputs + transformer_outputs[1:]  # Keep new_mems and attention/hidden states if they are here
917
918

        return outputs