train.py 12.7 KB
Newer Older
VictorSanh's avatar
VictorSanh committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
VictorSanh's avatar
VictorSanh committed
16
17
Training the distilled model.
Supported architectures include: BERT -> DistilBERT, RoBERTa -> DistilRoBERTa, GPT2 -> DistilGPT2.
VictorSanh's avatar
VictorSanh committed
18
"""
VictorSanh's avatar
VictorSanh committed
19
20
import argparse
import json
Aymeric Augustin's avatar
Aymeric Augustin committed
21
22
import os
import pickle
VictorSanh's avatar
VictorSanh committed
23
import shutil
Aymeric Augustin's avatar
Aymeric Augustin committed
24

VictorSanh's avatar
VictorSanh committed
25
26
27
28
import numpy as np
import torch

from distiller import Distiller
VictorSanh's avatar
VictorSanh committed
29
from lm_seqs_dataset import LmSeqsDataset
Aymeric Augustin's avatar
Aymeric Augustin committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from transformers import (
    BertConfig,
    BertForMaskedLM,
    BertTokenizer,
    DistilBertConfig,
    DistilBertForMaskedLM,
    DistilBertTokenizer,
    GPT2Config,
    GPT2LMHeadModel,
    GPT2Tokenizer,
    RobertaConfig,
    RobertaForMaskedLM,
    RobertaTokenizer,
)
from utils import git_log, init_gpu_params, logger, set_seed
VictorSanh's avatar
VictorSanh committed
45
46
47


MODEL_CLASSES = {
48
49
50
51
    "distilbert": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer),
    "roberta": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer),
    "bert": (BertConfig, BertForMaskedLM, BertTokenizer),
    "gpt2": (GPT2Config, GPT2LMHeadModel, GPT2Tokenizer),
VictorSanh's avatar
VictorSanh committed
52
53
}

54

VictorSanh's avatar
VictorSanh committed
55
56
57
58
def sanity_checks(args):
    """
    A bunch of args sanity checks to perform even starting...
    """
59
60
    assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0)
    assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0)
VictorSanh's avatar
VictorSanh committed
61
62
    if args.mlm:
        assert os.path.isfile(args.token_counts)
63
        assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"])
VictorSanh's avatar
VictorSanh committed
64
    else:
65
        assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"])
VictorSanh's avatar
VictorSanh committed
66

67
68
69
    assert args.teacher_type == args.student_type or (
        args.student_type == "distilbert" and args.teacher_type == "bert"
    )
VictorSanh's avatar
VictorSanh committed
70
71
72
73
    assert os.path.isfile(args.student_config)
    if args.student_pretrained_weights is not None:
        assert os.path.isfile(args.student_pretrained_weights)

74
75
76
77
78
79
80
81
82
    if args.freeze_token_type_embds:
        assert args.student_type in ["roberta"]

    assert args.alpha_ce >= 0.0
    assert args.alpha_mlm >= 0.0
    assert args.alpha_clm >= 0.0
    assert args.alpha_mse >= 0.0
    assert args.alpha_cos >= 0.0
    assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0
VictorSanh's avatar
VictorSanh committed
83
84
85


def freeze_pos_embeddings(student, args):
86
    if args.student_type == "roberta":
VictorSanh's avatar
VictorSanh committed
87
        student.roberta.embeddings.position_embeddings.weight.requires_grad = False
88
    elif args.student_type == "gpt2":
VictorSanh's avatar
VictorSanh committed
89
        student.transformer.wpe.weight.requires_grad = False
VictorSanh's avatar
VictorSanh committed
90

91

VictorSanh's avatar
VictorSanh committed
92
def freeze_token_type_embeddings(student, args):
93
    if args.student_type == "roberta":
VictorSanh's avatar
VictorSanh committed
94
        student.roberta.embeddings.token_type_embeddings.weight.requires_grad = False
VictorSanh's avatar
VictorSanh committed
95

96

VictorSanh's avatar
VictorSanh committed
97
98
def main():
    parser = argparse.ArgumentParser(description="Training")
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
    parser.add_argument("--force", action="store_true", help="Overwrite dump_path if it already exists.")

    parser.add_argument(
        "--dump_path", type=str, required=True, help="The output directory (log, checkpoints, parameters, etc.)"
    )
    parser.add_argument(
        "--data_file",
        type=str,
        required=True,
        help="The binarized file (tokenized + tokens_to_ids) and grouped by sequence.",
    )

    parser.add_argument(
        "--student_type",
        type=str,
        choices=["distilbert", "roberta", "gpt2"],
        required=True,
        help="The student type (DistilBERT, RoBERTa).",
    )
    parser.add_argument("--student_config", type=str, required=True, help="Path to the student configuration.")
    parser.add_argument(
        "--student_pretrained_weights", default=None, type=str, help="Load student initialization checkpoint."
    )

    parser.add_argument(
        "--teacher_type", choices=["bert", "roberta", "gpt2"], required=True, help="Teacher type (BERT, RoBERTa)."
    )
    parser.add_argument("--teacher_name", type=str, required=True, help="The teacher model.")

    parser.add_argument("--temperature", default=2.0, type=float, help="Temperature for the softmax temperature.")
    parser.add_argument(
        "--alpha_ce", default=0.5, type=float, help="Linear weight for the distillation loss. Must be >=0."
    )
    parser.add_argument(
        "--alpha_mlm",
        default=0.0,
        type=float,
        help="Linear weight for the MLM loss. Must be >=0. Should be used in coonjunction with `mlm` flag.",
    )
    parser.add_argument("--alpha_clm", default=0.5, type=float, help="Linear weight for the CLM loss. Must be >=0.")
    parser.add_argument("--alpha_mse", default=0.0, type=float, help="Linear weight of the MSE loss. Must be >=0.")
    parser.add_argument(
        "--alpha_cos", default=0.0, type=float, help="Linear weight of the cosine embedding loss. Must be >=0."
    )

    parser.add_argument(
        "--mlm", action="store_true", help="The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM."
    )
    parser.add_argument(
        "--mlm_mask_prop",
        default=0.15,
        type=float,
        help="Proportion of tokens for which we need to make a prediction.",
    )
    parser.add_argument("--word_mask", default=0.8, type=float, help="Proportion of tokens to mask out.")
    parser.add_argument("--word_keep", default=0.1, type=float, help="Proportion of tokens to keep.")
    parser.add_argument("--word_rand", default=0.1, type=float, help="Proportion of tokens to randomly replace.")
    parser.add_argument(
        "--mlm_smoothing",
        default=0.7,
        type=float,
        help="Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).",
    )
    parser.add_argument("--token_counts", type=str, help="The token counts in the data_file for MLM.")

    parser.add_argument(
        "--restrict_ce_to_mask",
        action="store_true",
        help="If true, compute the distilation loss only the [MLM] prediction distribution.",
    )
    parser.add_argument(
        "--freeze_pos_embs",
        action="store_true",
        help="Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only.",
    )
    parser.add_argument(
        "--freeze_token_type_embds",
        action="store_true",
        help="Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only.",
    )

    parser.add_argument("--n_epoch", type=int, default=3, help="Number of pass on the whole dataset.")
    parser.add_argument("--batch_size", type=int, default=5, help="Batch size (for each process).")
    parser.add_argument(
        "--group_by_size",
        action="store_false",
        help="If true, group sequences that have similar length into the same batch. Default is true.",
    )

    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=50,
        help="Gradient accumulation for larger training batches.",
    )
    parser.add_argument("--warmup_prop", default=0.05, type=float, help="Linear warmup proportion.")
    parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight deay if we apply some.")
    parser.add_argument("--learning_rate", default=5e-4, type=float, help="The initial learning rate for Adam.")
    parser.add_argument("--adam_epsilon", default=1e-6, type=float, help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=5.0, type=float, help="Max gradient norm.")
    parser.add_argument("--initializer_range", default=0.02, type=float, help="Random initialization range.")

    parser.add_argument(
        "--fp16",
        action="store_true",
        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
    )
    parser.add_argument(
        "--fp16_opt_level",
        type=str,
        default="O1",
        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html",
    )
    parser.add_argument("--n_gpu", type=int, default=1, help="Number of GPUs in the node.")
    parser.add_argument("--local_rank", type=int, default=-1, help="Distributed training - Local rank")
    parser.add_argument("--seed", type=int, default=56, help="Random seed")

    parser.add_argument("--log_interval", type=int, default=500, help="Tensorboard logging interval.")
    parser.add_argument("--checkpoint_interval", type=int, default=4000, help="Checkpoint interval.")
VictorSanh's avatar
VictorSanh committed
219
    args = parser.parse_args()
VictorSanh's avatar
VictorSanh committed
220
    sanity_checks(args)
VictorSanh's avatar
VictorSanh committed
221

222
    # ARGS #
VictorSanh's avatar
VictorSanh committed
223
224
225
226
227
    init_gpu_params(args)
    set_seed(args)
    if args.is_master:
        if os.path.exists(args.dump_path):
            if not args.force:
228
229
230
231
                raise ValueError(
                    f"Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite it"
                    "Use `--force` if you want to overwrite it"
                )
VictorSanh's avatar
VictorSanh committed
232
233
234
235
236
            else:
                shutil.rmtree(args.dump_path)

        if not os.path.exists(args.dump_path):
            os.makedirs(args.dump_path)
237
        logger.info(f"Experiment will be dumped and logged in {args.dump_path}")
VictorSanh's avatar
VictorSanh committed
238

239
        # SAVE PARAMS #
240
241
        logger.info(f"Param: {args}")
        with open(os.path.join(args.dump_path, "parameters.json"), "w") as f:
VictorSanh's avatar
VictorSanh committed
242
243
244
            json.dump(vars(args), f, indent=4)
        git_log(args.dump_path)

VictorSanh's avatar
VictorSanh committed
245
246
    student_config_class, student_model_class, _ = MODEL_CLASSES[args.student_type]
    teacher_config_class, teacher_model_class, teacher_tokenizer_class = MODEL_CLASSES[args.teacher_type]
VictorSanh's avatar
VictorSanh committed
247

248
    # TOKENIZER #
VictorSanh's avatar
VictorSanh committed
249
    tokenizer = teacher_tokenizer_class.from_pretrained(args.teacher_name)
VictorSanh's avatar
VictorSanh committed
250
    special_tok_ids = {}
251
252
253
    for tok_name, tok_symbol in tokenizer.special_tokens_map.items():
        idx = tokenizer.all_special_tokens.index(tok_symbol)
        special_tok_ids[tok_name] = tokenizer.all_special_ids[idx]
254
    logger.info(f"Special tokens {special_tok_ids}")
VictorSanh's avatar
VictorSanh committed
255
    args.special_tok_ids = special_tok_ids
VictorSanh's avatar
VictorSanh committed
256
    args.max_model_input_size = tokenizer.max_model_input_sizes[args.teacher_name]
VictorSanh's avatar
VictorSanh committed
257

258
    # DATA LOADER #
259
260
    logger.info(f"Loading data from {args.data_file}")
    with open(args.data_file, "rb") as fp:
VictorSanh's avatar
VictorSanh committed
261
262
        data = pickle.load(fp)

VictorSanh's avatar
VictorSanh committed
263
    if args.mlm:
264
265
        logger.info(f"Loading token counts from {args.token_counts} (already pre-computed)")
        with open(args.token_counts, "rb") as fp:
VictorSanh's avatar
VictorSanh committed
266
            counts = pickle.load(fp)
267

VictorSanh's avatar
VictorSanh committed
268
269
        token_probs = np.maximum(counts, 1) ** -args.mlm_smoothing
        for idx in special_tok_ids.values():
270
            token_probs[idx] = 0.0  # do not predict special tokens
VictorSanh's avatar
VictorSanh committed
271
272
273
        token_probs = torch.from_numpy(token_probs)
    else:
        token_probs = None
VictorSanh's avatar
VictorSanh committed
274

VictorSanh's avatar
VictorSanh committed
275
    train_lm_seq_dataset = LmSeqsDataset(params=args, data=data)
276
    logger.info("Data loader created.")
VictorSanh's avatar
VictorSanh committed
277

278
    # STUDENT #
279
    logger.info(f"Loading student config from {args.student_config}")
VictorSanh's avatar
VictorSanh committed
280
281
282
283
    stu_architecture_config = student_config_class.from_pretrained(args.student_config)
    stu_architecture_config.output_hidden_states = True

    if args.student_pretrained_weights is not None:
284
285
        logger.info(f"Loading pretrained weights from {args.student_pretrained_weights}")
        student = student_model_class.from_pretrained(args.student_pretrained_weights, config=stu_architecture_config)
VictorSanh's avatar
VictorSanh committed
286
    else:
VictorSanh's avatar
VictorSanh committed
287
        student = student_model_class(stu_architecture_config)
VictorSanh's avatar
VictorSanh committed
288
289

    if args.n_gpu > 0:
290
        student.to(f"cuda:{args.local_rank}")
291
    logger.info("Student loaded.")
VictorSanh's avatar
VictorSanh committed
292

293
    # TEACHER #
VictorSanh's avatar
VictorSanh committed
294
    teacher = teacher_model_class.from_pretrained(args.teacher_name, output_hidden_states=True)
VictorSanh's avatar
VictorSanh committed
295
    if args.n_gpu > 0:
296
297
        teacher.to(f"cuda:{args.local_rank}")
    logger.info(f"Teacher loaded from {args.teacher_name}.")
VictorSanh's avatar
VictorSanh committed
298

299
    # FREEZING #
VictorSanh's avatar
VictorSanh committed
300
301
302
303
304
    if args.freeze_pos_embs:
        freeze_pos_embeddings(student, args)
    if args.freeze_token_type_embds:
        freeze_token_type_embeddings(student, args)

305
    # SANITY CHECKS #
VictorSanh's avatar
VictorSanh committed
306
307
308
309
310
311
    assert student.config.vocab_size == teacher.config.vocab_size
    assert student.config.hidden_size == teacher.config.hidden_size
    assert student.config.max_position_embeddings == teacher.config.max_position_embeddings
    if args.mlm:
        assert token_probs.size(0) == stu_architecture_config.vocab_size

312
    # DISTILLER #
VictorSanh's avatar
VictorSanh committed
313
    torch.cuda.empty_cache()
314
315
316
    distiller = Distiller(
        params=args, dataset=train_lm_seq_dataset, token_probs=token_probs, student=student, teacher=teacher
    )
VictorSanh's avatar
VictorSanh committed
317
318
319
320
321
322
    distiller.train()
    logger.info("Let's go get some drinks.")


if __name__ == "__main__":
    main()