test_pipelines_audio_classification.py 3.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import numpy as np

19
from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
from transformers.pipelines import AudioClassificationPipeline, pipeline
from transformers.testing_utils import (
    is_pipeline_test,
    nested_simplify,
    require_datasets,
    require_tf,
    require_torch,
    slow,
)

from .test_pipelines_common import ANY, PipelineTestCaseMeta


@is_pipeline_test
@require_torch
class AudioClassificationPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
    model_mapping = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING

    @require_datasets
    @slow
    def run_pipeline_test(self, model, tokenizer, feature_extractor):
        import datasets

        audio_classifier = AudioClassificationPipeline(model=model, feature_extractor=feature_extractor)

        # test with a raw waveform
        audio = np.zeros((34000,))
        output = audio_classifier(audio)
        # by default a model is initialized with num_labels=2
        self.assertEqual(
            output,
            [
                {"score": ANY(float), "label": ANY(str)},
                {"score": ANY(float), "label": ANY(str)},
            ],
        )
        output = audio_classifier(audio, top_k=1)
        self.assertEqual(
            output,
            [
                {"score": ANY(float), "label": ANY(str)},
            ],
        )

        # test with a local file
Patrick von Platen's avatar
Patrick von Platen committed
65
        dataset = datasets.load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
66
67
68
69
70
71
72
73
74
75
76
77
78
        filename = dataset[0]["file"]
        output = audio_classifier(filename)
        self.assertEqual(
            output,
            [
                {"score": ANY(float), "label": ANY(str)},
                {"score": ANY(float), "label": ANY(str)},
            ],
        )

    @require_torch
    def test_small_model_pt(self):
        model = "anton-l/wav2vec2-random-tiny-classifier"
79

80
        audio_classifier = pipeline("audio-classification", model=model)
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

        audio = np.ones((8000,))
        output = audio_classifier(audio, top_k=4)
        self.assertEqual(
            nested_simplify(output, decimals=4),
            [
                {"score": 0.0843, "label": "on"},
                {"score": 0.0840, "label": "left"},
                {"score": 0.0837, "label": "off"},
                {"score": 0.0835, "label": "yes"},
            ],
        )

    @require_torch
    @require_datasets
    @slow
    def test_large_model_pt(self):
        import datasets

        model = "superb/wav2vec2-base-superb-ks"
101

102
        audio_classifier = pipeline("audio-classification", model=model)
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
        dataset = datasets.load_dataset("anton-l/superb_dummy", "ks", split="test")

        audio = np.array(dataset[3]["speech"], dtype=np.float32)
        output = audio_classifier(audio, top_k=4)
        self.assertEqual(
            nested_simplify(output, decimals=4),
            [
                {"score": 0.9809, "label": "go"},
                {"score": 0.0073, "label": "up"},
                {"score": 0.0064, "label": "_unknown_"},
                {"score": 0.0015, "label": "down"},
            ],
        )

    @require_tf
    @unittest.skip("Audio classification is not implemented for TF")
    def test_small_model_tf(self):
        pass