codeparrot_training.py 8.97 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import logging
from argparse import Namespace
from pathlib import Path

import datasets
import torch
from datasets import load_dataset
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from torch.utils.tensorboard import SummaryWriter

import transformers
import wandb
from accelerate import Accelerator
from arguments import TrainingArguments
from huggingface_hub import Repository
from transformers import AdamW, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, get_scheduler, set_seed


class ConstantLengthDataset(IterableDataset):
    """
    Iterable dataset that returns constant length chunks of tokens from stream of text files.
        Args:
            tokenizer (Tokenizer): The processor used for proccessing the data.
            dataset (dataset.Dataset): Dataset with text files.
            infinite (bool): If True the iterator is reset after dataset reaches end else stops.
            seq_length (int): Length of token sequences to return.
            num_of_sequences: Number of token sequences to keep in buffer.
            chars_per_token: Number of characters per token used to estimate number of tokens in text buffer.
    """

    def __init__(
        self, tokenizer, dataset, infinite=False, seq_length=1024, num_of_sequences=1024, chars_per_token=3.6
    ):
        self.tokenizer = tokenizer
        self.concat_token_id = tokenizer.bos_token_id
        self.dataset = dataset
        self.seq_length = seq_length
        self.input_characters = seq_length * chars_per_token * num_of_sequences
        self.epoch = 0
        self.infinite = infinite

    def __iter__(self):
        iterator = iter(self.dataset)
        more_examples = True
        while more_examples:
            buffer, buffer_len = [], 0
            while True:
                if buffer_len >= self.input_characters:
                    break
                try:
                    buffer.append(next(iterator)["content"])
                    buffer_len += len(buffer[-1])
                except StopIteration:
                    if self.infinite:
                        iterator = iter(self.dataset)
                        self.epoch += 1
                        logger.info(f"Dataset epoch: {self.epoch}")
                    else:
                        more_examples = False
                        break
            tokenized_inputs = tokenizer(buffer, truncation=False)["input_ids"]
            all_token_ids = []
            for tokenized_input in tokenized_inputs:
                all_token_ids.extend(tokenized_input + [self.concat_token_id])
            for i in range(0, len(all_token_ids), self.seq_length):
                input_ids = all_token_ids[i : i + self.seq_length]
                if len(input_ids) == self.seq_length:
                    yield torch.tensor(input_ids)


def setup_logging(args):
    project_name = args.model_ckpt.split("/")[-1]
    logger = logging.getLogger(__name__)
    log_dir = Path(args.save_dir) / "log/"
    log_dir.mkdir(exist_ok=True)
    filename = f"debug_{accelerator.process_index}.log"
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
        handlers=[logging.FileHandler(log_dir / filename), logging.StreamHandler()],
    )
    if accelerator.is_main_process:  # we only want to setup logging once
        wandb.init(project=project_name, config=args)
        run_name = wandb.run.name
        tb_writer = SummaryWriter()
        tb_writer.add_hparams(vars(args), {"0": 0})
        logger.setLevel(logging.INFO)
        datasets.utils.logging.set_verbosity_info()
        transformers.utils.logging.set_verbosity_info()
    else:
        tb_writer = None
        run_name = ""
        logger.setLevel(logging.ERROR)
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()
    return logger, tb_writer, run_name


def create_dataloaders(args):
    ds_kwargs = {"streaming": True}
    train_data = load_dataset(args.dataset_name_train, split="train", **ds_kwargs)
    train_data = train_data.shuffle(buffer_size=args.shuffle_buffer, seed=args.seed)
    valid_data = load_dataset(args.dataset_name_valid, split="train", **ds_kwargs)
    train_dataset = ConstantLengthDataset(tokenizer, train_data, infinite=True, seq_length=args.seq_length)
    valid_dataset = ConstantLengthDataset(tokenizer, valid_data, infinite=False, seq_length=args.seq_length)
    train_dataloader = DataLoader(train_dataset, batch_size=args.train_batch_size)
    eval_dataloader = DataLoader(valid_dataset, batch_size=args.valid_batch_size)
    return train_dataloader, eval_dataloader


def get_grouped_params(model, args, no_decay=["bias", "LayerNorm.weight"]):
    params_with_wd, params_without_wd = [], []
    for n, p in model.named_parameters():
        if any(nd in n for nd in no_decay):
            params_without_wd.append(p)
        else:
            params_with_wd.append(p)
    return [
        {"params": params_with_wd, "weight_decay": args.weight_decay},
        {"params": params_without_wd, "weight_decay": 0.0},
    ]


def log_metrics(step, metrics):
    logger.info(f"Step {step}: {metrics}")
    if accelerator.is_main_process:
        wandb.log(metrics)
        [tb_writer.add_scalar(k, v, step) for k, v in metrics.items()]


def evaluate(args):
    model.eval()
    losses = []
    for step, batch in enumerate(eval_dataloader):
        with torch.no_grad():
            outputs = model(batch, labels=batch)
        loss = outputs.loss.repeat(args.valid_batch_size)
        losses.append(accelerator.gather(loss))
        if args.max_eval_steps > 0 and step >= args.max_eval_steps:
            break
    loss = torch.mean(torch.cat(losses))
    try:
        perplexity = torch.exp(loss)
    except OverflowError:
        perplexity = float("inf")
    return loss.item(), perplexity.item()


# Accelerator
accelerator = Accelerator()
acc_state = {str(k): str(v) for k, v in accelerator.state.__dict__.items()}

# Settings
parser = HfArgumentParser(TrainingArguments)
args = parser.parse_args()

args = Namespace(**vars(args), **acc_state)
samples_per_step = accelerator.state.num_processes * args.train_batch_size
set_seed(args.seed)

# Clone model repository
if accelerator.is_main_process:
    hf_repo = Repository(args.save_dir, clone_from=args.model_ckpt)

# Logging
logger, tb_writer, run_name = setup_logging(args)
logger.info(accelerator.state)

# Checkout new branch on repo
if accelerator.is_main_process:
    hf_repo.git_checkout(run_name, create_branch_ok=True)

# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained(args.save_dir)
if args.gradient_checkpointing:
    model.gradient_checkpointing_enable()
tokenizer = AutoTokenizer.from_pretrained(args.save_dir)

# Load dataset and dataloader
train_dataloader, eval_dataloader = create_dataloaders(args)

# Prepare the optimizer and learning rate scheduler
optimizer = AdamW(get_grouped_params(model, args), lr=args.learning_rate)
lr_scheduler = get_scheduler(
    name=args.lr_scheduler_type,
    optimizer=optimizer,
    num_warmup_steps=args.num_warmup_steps,
    num_training_steps=args.max_train_steps,
)


def get_lr():
    return optimizer.param_groups[0]["lr"]


# Prepare everything with our `accelerator`.
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
    model, optimizer, train_dataloader, eval_dataloader
)

# Train model
model.train()
completed_steps = 0
for step, batch in enumerate(train_dataloader, start=1):
    loss = model(batch, labels=batch, use_cache=False).loss
    log_metrics(
        step, {"lr": get_lr(), "samples": step * samples_per_step, "steps": completed_steps, "loss/train": loss.item()}
    )
    loss = loss / args.gradient_accumulation_steps
    accelerator.backward(loss)
    if step % args.gradient_accumulation_steps == 0:
        accelerator.clip_grad_norm_(model.parameters(), 1.0)
        optimizer.step()
        lr_scheduler.step()
        optimizer.zero_grad()
        completed_steps += 1
    if step % args.save_checkpoint_steps == 0:
        logger.info("Evaluating and saving model checkpoint")
        eval_loss, perplexity = evaluate(args)
        log_metrics(step, {"loss/eval": eval_loss, "perplexity": perplexity})
        accelerator.wait_for_everyone()
        unwrapped_model = accelerator.unwrap_model(model)
        unwrapped_model.save_pretrained(args.save_dir, save_function=accelerator.save)
        if accelerator.is_main_process:
            hf_repo.push_to_hub(commit_message=f"step {step}")
        model.train()
    if completed_steps >= args.max_train_steps:
        break

# Evaluate and save the last checkpoint
logger.info("Evaluating and saving model after training")
eval_loss, perplexity = evaluate(args)
log_metrics(step, {"loss/eval": eval_loss, "perplexity": perplexity})
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(args.save_dir, save_function=accelerator.save)
if accelerator.is_main_process:
    hf_repo.push_to_hub(commit_message="final model")