run_tf_glue.py 7.94 KB
Newer Older
Julien Plu's avatar
Julien Plu committed
1
2
3
4
5
# coding=utf-8
""" Fine-tuning the library models for sequence classification."""


import logging
6
import os
Julien Plu's avatar
Julien Plu committed
7
8
9
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, Optional
Aymeric Augustin's avatar
Aymeric Augustin committed
10

Julien Plu's avatar
Julien Plu committed
11
import numpy as np
Julien Plu's avatar
Julien Plu committed
12
import tensorflow as tf
Julien Plu's avatar
Julien Plu committed
13
import tensorflow_datasets as tfds
14

15
from transformers import (
Julien Plu's avatar
Julien Plu committed
16
17
18
19
20
21
22
23
24
    AutoConfig,
    AutoTokenizer,
    EvalPrediction,
    HfArgumentParser,
    PreTrainedTokenizer,
    TFAutoModelForSequenceClassification,
    TFTrainer,
    TFTrainingArguments,
    glue_compute_metrics,
25
    glue_convert_examples_to_features,
Julien Plu's avatar
Julien Plu committed
26
    glue_output_modes,
27
    glue_processors,
Julien Plu's avatar
Julien Plu committed
28
    glue_tasks_num_labels,
29
)
30
31
32
33
34
35
from transformers.utils import logging as hf_logging


hf_logging.set_verbosity_info()
hf_logging.enable_default_handler()
hf_logging.enable_explicit_format()
thomwolf's avatar
thomwolf committed
36

Aymeric Augustin's avatar
Aymeric Augustin committed
37

Julien Plu's avatar
Julien Plu committed
38
39
40
41
42
43
44
class Split(Enum):
    train = "train"
    dev = "validation"
    test = "test"


def get_tfds(
Julien Plu's avatar
Julien Plu committed
45
46
47
48
49
    task_name: str,
    tokenizer: PreTrainedTokenizer,
    max_seq_length: Optional[int] = None,
    mode: Split = Split.train,
    data_dir: str = None,
Julien Plu's avatar
Julien Plu committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
):
    if task_name == "mnli-mm" and mode == Split.dev:
        tfds_name = "mnli_mismatched"
    elif task_name == "mnli-mm" and mode == Split.train:
        tfds_name = "mnli"
    elif task_name == "mnli" and mode == Split.dev:
        tfds_name = "mnli_matched"
    elif task_name == "sst-2":
        tfds_name = "sst2"
    elif task_name == "sts-b":
        tfds_name = "stsb"
    else:
        tfds_name = task_name

Julien Plu's avatar
Julien Plu committed
64
65
66
    ds, info = tfds.load("glue/" + tfds_name, split=mode.value, with_info=True, data_dir=data_dir)
    ds = glue_convert_examples_to_features(ds, tokenizer, max_seq_length, task_name)
    ds = ds.apply(tf.data.experimental.assert_cardinality(info.splits[mode.value].num_examples))
Julien Plu's avatar
Julien Plu committed
67

Julien Plu's avatar
Julien Plu committed
68
    return ds
Julien Plu's avatar
Julien Plu committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84


logger = logging.getLogger(__name__)


@dataclass
class GlueDataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.

    Using `HfArgumentParser` we can turn this class
    into argparse arguments to be able to specify them on
    the command line.
    """

    task_name: str = field(metadata={"help": "The name of the task to train on: " + ", ".join(glue_processors.keys())})
Julien Plu's avatar
Julien Plu committed
85
    data_dir: Optional[str] = field(default=None, metadata={"help": "The input/output data dir for TFDS."})
Julien Plu's avatar
Julien Plu committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
    max_seq_length: int = field(
        default=128,
        metadata={
            "help": "The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )

    def __post_init__(self):
        self.task_name = self.task_name.lower()


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    use_fast: bool = field(default=False, metadata={"help": "Set this flag to use fast tokenization."})
    # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
    # or just modify its tokenizer_config.json.
    cache_dir: Optional[str] = field(
        default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
    )


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.
    parser = HfArgumentParser((ModelArguments, GlueDataTrainingArguments, TFTrainingArguments))
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    if (
        os.path.exists(training_args.output_dir)
        and os.listdir(training_args.output_dir)
        and training_args.do_train
        and not training_args.overwrite_output_dir
    ):
        raise ValueError(
            f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
        )

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(
148
149
150
        "n_replicas: %s, distributed training: %s, 16-bits training: %s",
        training_args.n_replicas,
        bool(training_args.n_replicas > 1),
Julien Plu's avatar
Julien Plu committed
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
        training_args.fp16,
    )
    logger.info("Training/evaluation parameters %s", training_args)

    try:
        num_labels = glue_tasks_num_labels["mnli" if data_args.task_name == "mnli-mm" else data_args.task_name]
        output_mode = glue_output_modes[data_args.task_name]
    except KeyError:
        raise ValueError("Task not found: %s" % (data_args.task_name))

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.

    config = AutoConfig.from_pretrained(
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
        num_labels=num_labels,
        finetuning_task=data_args.task_name,
        cache_dir=model_args.cache_dir,
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
    )

    with training_args.strategy.scope():
        model = TFAutoModelForSequenceClassification.from_pretrained(
            model_args.model_name_or_path,
            from_pt=bool(".bin" in model_args.model_name_or_path),
            config=config,
            cache_dir=model_args.cache_dir,
        )

    # Get datasets
    train_dataset = (
Julien Plu's avatar
Julien Plu committed
188
189
190
191
192
193
        get_tfds(
            task_name=data_args.task_name,
            tokenizer=tokenizer,
            max_seq_length=data_args.max_seq_length,
            data_dir=data_args.data_dir,
        )
Julien Plu's avatar
Julien Plu committed
194
195
196
197
198
        if training_args.do_train
        else None
    )
    eval_dataset = (
        get_tfds(
Julien Plu's avatar
Julien Plu committed
199
200
201
202
203
            task_name=data_args.task_name,
            tokenizer=tokenizer,
            max_seq_length=data_args.max_seq_length,
            mode=Split.dev,
            data_dir=data_args.data_dir,
Julien Plu's avatar
Julien Plu committed
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
        )
        if training_args.do_eval
        else None
    )

    def compute_metrics(p: EvalPrediction) -> Dict:
        if output_mode == "classification":
            preds = np.argmax(p.predictions, axis=1)
        elif output_mode == "regression":
            preds = np.squeeze(p.predictions)
        return glue_compute_metrics(data_args.task_name, preds, p.label_ids)

    # Initialize our Trainer
    trainer = TFTrainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
        compute_metrics=compute_metrics,
    )

    # Training
    if training_args.do_train:
        trainer.train()
        trainer.save_model()
        tokenizer.save_pretrained(training_args.output_dir)

    # Evaluation
    results = {}
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

        result = trainer.evaluate()
        output_eval_file = os.path.join(training_args.output_dir, "eval_results.txt")

        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")

            for key, value in result.items():
                logger.info("  %s = %s", key, value)
                writer.write("%s = %s\n" % (key, value))

            results.update(result)

    return results


if __name__ == "__main__":
    main()