test_utils.py 132 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2020 The HuggingFace Team Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a clone of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


17
import inspect
18
19
import unittest

20
21
import numpy as np

22
from transformers import is_torch_available, pipeline
23
from transformers.testing_utils import require_torch, slow, torch_device
24

25
from ..test_modeling_common import floats_tensor, ids_tensor
26

27
28
29
30

if is_torch_available():
    import torch

31
    from transformers import (
32
        AutoModelForCausalLM,
33
34
        AutoModelForSeq2SeqLM,
        AutoTokenizer,
35
36
37
38
        BartForConditionalGeneration,
        BartTokenizer,
        GPT2LMHeadModel,
        GPT2Tokenizer,
39
        ImageGPTForCausalImageModeling,
40
41
        Speech2TextForConditionalGeneration,
        SpeechEncoderDecoderModel,
42
        T5ForConditionalGeneration,
43
        VisionEncoderDecoderModel,
44
45
        top_k_top_p_filtering,
    )
46
47
48
49
50
51
52
53
    from transformers.generation import (
        BeamSampleDecoderOnlyOutput,
        BeamSampleEncoderDecoderOutput,
        BeamSearchDecoderOnlyOutput,
        BeamSearchEncoderDecoderOutput,
        BeamSearchScorer,
        ConstrainedBeamSearchScorer,
        DisjunctiveConstraint,
54
55
        ForcedBOSTokenLogitsProcessor,
        ForcedEOSTokenLogitsProcessor,
56
57
        GreedySearchDecoderOnlyOutput,
        GreedySearchEncoderDecoderOutput,
58
        HammingDiversityLogitsProcessor,
59
        InfNanRemoveLogitsProcessor,
60
        LogitsProcessorList,
61
        MaxLengthCriteria,
62
63
64
        MinLengthLogitsProcessor,
        NoBadWordsLogitsProcessor,
        NoRepeatNGramLogitsProcessor,
65
        PhrasalConstraint,
66
        RepetitionPenaltyLogitsProcessor,
67
68
69
70
        SampleDecoderOnlyOutput,
        SampleEncoderDecoderOutput,
        StoppingCriteria,
        StoppingCriteriaList,
71
72
73
74
75
76
77
78
79
        TemperatureLogitsWarper,
        TopKLogitsWarper,
        TopPLogitsWarper,
    )


class GenerationTesterMixin:
    model_tester = None
    all_generative_model_classes = ()
Suraj Patil's avatar
Suraj Patil committed
80
    input_name = "input_ids"
81
82
83

    def _get_input_ids_and_config(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Suraj Patil's avatar
Suraj Patil committed
84
        input_ids = inputs_dict[self.input_name]
85
86
87
88
89
90
91
92
93
94

        # cut to half length & take max batch_size 3
        max_batch_size = 2
        sequence_length = input_ids.shape[-1] // 2
        input_ids = input_ids[:max_batch_size, :sequence_length]

        # generate max 3 tokens
        max_length = input_ids.shape[-1] + 3
        if config.eos_token_id is not None and config.pad_token_id is None:
            # hack to allow generate for models such as GPT2 as is done in `generate()`
95
96
97
            if isinstance(config.eos_token_id, int):
                config.eos_token_id = [config.eos_token_id]
            config.pad_token_id = config.eos_token_id[0]
98
99
100
101
102
103
        # TransfoXL has no attention mask
        if "transfoxl" in config.__class__.__name__.lower():
            attention_mask = None
        else:
            attention_mask = torch.ones_like(input_ids, dtype=torch.long)[:max_batch_size, :sequence_length]

104
105
106
        return config, input_ids, attention_mask, max_length

    @staticmethod
107
108
109
110
111
112
113
114
    def _get_logits_processor_and_kwargs(
        input_length,
        eos_token_id,
        forced_bos_token_id=None,
        forced_eos_token_id=None,
        max_length=None,
        diversity_penalty=None,
    ):
115
        process_kwargs = {
116
            "min_length": input_length + 1 if max_length is None else max_length - 1,
117
118
119
120
121
122
            "bad_words_ids": [[1, 0]],
            "no_repeat_ngram_size": 2,
            "repetition_penalty": 1.2,
        }
        logits_processor = LogitsProcessorList(
            (
123
124
125
126
127
128
129
                [
                    HammingDiversityLogitsProcessor(diversity_penalty, num_beams=2, num_beam_groups=2),
                ]
                if diversity_penalty is not None
                else []
            )
            + (
130
131
132
133
134
135
                [
                    MinLengthLogitsProcessor(process_kwargs["min_length"], eos_token_id),
                ]
                if eos_token_id is not None
                else []
            )
136
137
138
139
140
141
142
143
144
145
146
147
            + (
                [
                    ForcedBOSTokenLogitsProcessor(forced_bos_token_id),
                ]
                if forced_bos_token_id is not None
                else []
            )
            + (
                [ForcedEOSTokenLogitsProcessor(max_length, forced_eos_token_id)]
                if forced_eos_token_id is not None
                else []
            )
148
149
150
151
152
153
154
155
156
157
158
159
160
            + [
                NoBadWordsLogitsProcessor(process_kwargs["bad_words_ids"], eos_token_id),
                NoRepeatNGramLogitsProcessor(process_kwargs["no_repeat_ngram_size"]),
                RepetitionPenaltyLogitsProcessor(process_kwargs["repetition_penalty"]),
            ]
        )
        return process_kwargs, logits_processor

    @staticmethod
    def _get_warper_and_kwargs(num_beams):
        warp_kwargs = {"top_k": 10, "top_p": 0.7, "temperature": 0.7}
        logits_warper = LogitsProcessorList(
            [
Patrick von Platen's avatar
Patrick von Platen committed
161
                TemperatureLogitsWarper(warp_kwargs["temperature"]),
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
                TopKLogitsWarper(top_k=warp_kwargs["top_k"], min_tokens_to_keep=(2 if num_beams > 1 else 1)),
                TopPLogitsWarper(top_p=warp_kwargs["top_p"], min_tokens_to_keep=(2 if num_beams > 1 else 1)),
            ]
        )
        return warp_kwargs, logits_warper

    @staticmethod
    def _get_beam_scorer_and_kwargs(batch_size, max_length, num_return_sequences=1):
        beam_kwargs = {
            "early_stopping": False,
            "length_penalty": 2.0,
            "num_beams": 2,
            "num_return_sequences": num_return_sequences,
        }
        beam_scorer = BeamSearchScorer(
            batch_size=batch_size,
            num_beams=beam_kwargs["num_beams"],
            device=torch_device,
            length_penalty=beam_kwargs["length_penalty"],
            do_early_stopping=beam_kwargs["early_stopping"],
            num_beam_hyps_to_keep=num_return_sequences,
        )
        return beam_kwargs, beam_scorer

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
    @staticmethod
    def _get_diverse_beam_scorer_and_kwargs(batch_size, max_length, num_return_sequences=1):
        beam_kwargs = {
            "early_stopping": False,
            "length_penalty": 2.0,
            "num_beams": 2,
            "num_return_sequences": num_return_sequences,
            "num_beam_groups": 2,  # one beam per group
            "diversity_penalty": 2.0,
        }
        beam_scorer = BeamSearchScorer(
            batch_size=batch_size,
            num_beams=beam_kwargs["num_beams"],
            device=torch_device,
            length_penalty=beam_kwargs["length_penalty"],
            do_early_stopping=beam_kwargs["early_stopping"],
            num_beam_hyps_to_keep=num_return_sequences,
            num_beam_groups=beam_kwargs["num_beam_groups"],
        )
        return beam_kwargs, beam_scorer

207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
    @staticmethod
    def _get_constrained_beam_scorer_and_kwargs(batch_size, max_length, constraints, num_return_sequences=1):
        beam_kwargs = {
            "early_stopping": False,
            "length_penalty": 2.0,
            "num_beams": num_return_sequences * 4,
            "num_return_sequences": num_return_sequences,
        }
        beam_scorer = ConstrainedBeamSearchScorer(
            batch_size=batch_size,
            constraints=constraints,
            num_beams=beam_kwargs["num_beams"],
            device=torch_device,
            length_penalty=beam_kwargs["length_penalty"],
            do_early_stopping=beam_kwargs["early_stopping"],
            num_beam_hyps_to_keep=num_return_sequences,
        )
        return beam_kwargs, beam_scorer

226
    @staticmethod
227
228
229
    def _get_encoder_outputs(
        model, input_ids, attention_mask, output_attentions=None, output_hidden_states=None, num_interleave=1
    ):
230
        encoder = model.get_encoder()
231
232
233
234
235
236
        encoder_outputs = encoder(
            input_ids,
            attention_mask=attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
        )
237
238
239
240
241
242
243
        encoder_outputs["last_hidden_state"] = encoder_outputs.last_hidden_state.repeat_interleave(
            num_interleave, dim=0
        )
        input_ids = torch.zeros_like(input_ids[:, :1]) + model._get_decoder_start_token_id()
        attention_mask = None
        return encoder_outputs, input_ids, attention_mask

244
245
246
247
248
249
250
251
252
253
254
    def _greedy_generate(
        self,
        model,
        input_ids,
        attention_mask,
        max_length,
        output_scores=False,
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
255
256
        if model.config.is_encoder_decoder:
            max_length = 4
257
        logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
258
259
260
261
262
            input_ids.shape[-1],
            eos_token_id=model.config.eos_token_id,
            forced_bos_token_id=model.config.forced_bos_token_id,
            forced_eos_token_id=model.config.forced_eos_token_id,
            max_length=max_length,
263
264
265
        )

        kwargs = {}
266
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
267
268
269
270
271
272
273
274
275
        output_generate = model.generate(
            input_ids,
            do_sample=False,
            num_beams=1,
            max_length=max_length,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            output_scores=output_scores,
            return_dict_in_generate=return_dict_in_generate,
276
            remove_invalid_values=True,
277
            **logits_process_kwargs,
278
            **model_kwargs,
279
280
281
282
283
284
285
286
287
288
289
290
291
        )

        if model.config.is_encoder_decoder:
            encoder_outputs, input_ids, attention_mask = self._get_encoder_outputs(
                model,
                input_ids,
                attention_mask,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )
            kwargs["encoder_outputs"] = encoder_outputs

        with torch.no_grad():
292
            model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
293
294
295
296
297
298
299
300
301
            output_greedy = model.greedy_search(
                input_ids,
                max_length=max_length,
                logits_processor=logits_processor,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                output_scores=output_scores,
                return_dict_in_generate=return_dict_in_generate,
                **kwargs,
302
                **model_kwargs,
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
            )
        return output_greedy, output_generate

    def _sample_generate(
        self,
        model,
        input_ids,
        attention_mask,
        max_length,
        num_return_sequences,
        logits_processor,
        logits_warper,
        logits_warper_kwargs,
        process_kwargs,
        output_scores=False,
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
        torch.manual_seed(0)
323
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
324
325
326
327
328
329
330
331
332
333
        output_generate = model.generate(
            input_ids,
            do_sample=True,
            num_beams=1,
            max_length=max_length,
            num_return_sequences=num_return_sequences,
            output_scores=output_scores,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
334
            remove_invalid_values=True,
335
336
            **logits_warper_kwargs,
            **process_kwargs,
337
            **model_kwargs,
338
339
340
341
342
        )

        torch.manual_seed(0)
        kwargs = {}
        if model.config.is_encoder_decoder:
343
            encoder_outputs, input_ids, attention_mask = self._get_encoder_outputs(
344
345
346
347
348
349
350
351
                model,
                input_ids,
                attention_mask,
                num_interleave=num_return_sequences,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )
            kwargs["encoder_outputs"] = encoder_outputs
352
353
        elif attention_mask is not None:
            attention_mask = attention_mask.repeat_interleave(num_return_sequences, dim=0)
354

355
356
357
        # prevent flaky generation test failures
        logits_processor.append(InfNanRemoveLogitsProcessor())

358
        with torch.no_grad():
359
            model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
Vasudev Gupta's avatar
Vasudev Gupta committed
360
            output_sample = model.sample(
361
                input_ids.repeat_interleave(num_return_sequences, dim=0),
Vasudev Gupta's avatar
Vasudev Gupta committed
362
363
364
365
366
367
368
369
                max_length=max_length,
                logits_processor=logits_processor,
                logits_warper=logits_warper,
                output_scores=output_scores,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict_in_generate=return_dict_in_generate,
                **kwargs,
370
                **model_kwargs,
Vasudev Gupta's avatar
Vasudev Gupta committed
371
            )
372

373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
        return output_sample, output_generate

    def _beam_search_generate(
        self,
        model,
        input_ids,
        attention_mask,
        max_length,
        beam_scorer,
        beam_kwargs,
        logits_processor,
        logits_process_kwargs,
        output_scores=False,
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
390
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
391
392
393
394
395
396
397
398
        output_generate = model.generate(
            input_ids,
            do_sample=False,
            max_length=max_length,
            output_scores=output_scores,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
399
            remove_invalid_values=True,
400
401
            **beam_kwargs,
            **logits_process_kwargs,
402
            **model_kwargs,
403
404
405
406
407
        )

        # beam_search does not automatically interleave `batch_size` dim for `num_beams`
        kwargs = {}
        if model.config.is_encoder_decoder:
408
            encoder_outputs, input_ids, attention_mask = self._get_encoder_outputs(
409
410
411
412
413
414
415
416
                model,
                input_ids,
                attention_mask,
                num_interleave=beam_scorer.num_beams,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )
            kwargs["encoder_outputs"] = encoder_outputs
417
418
        elif attention_mask is not None:
            attention_mask = attention_mask.repeat_interleave(beam_scorer.num_beams, dim=0)
419
420

        with torch.no_grad():
421
            model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
422
            output_beam_search = model.beam_search(
423
                input_ids.repeat_interleave(beam_scorer.num_beams, dim=0),
424
425
426
427
428
429
430
431
                beam_scorer,
                max_length=max_length,
                logits_processor=logits_processor,
                output_scores=output_scores,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict_in_generate=return_dict_in_generate,
                **kwargs,
432
                **model_kwargs,
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
            )
        return output_generate, output_beam_search

    def _beam_sample_generate(
        self,
        model,
        input_ids,
        attention_mask,
        max_length,
        num_return_sequences,
        beam_scorer,
        beam_kwargs,
        logits_warper,
        logits_warper_kwargs,
        output_scores=False,
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
        torch.manual_seed(0)
453
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
454
455
456
457
458
459
460
461
        output_generate = model.generate(
            input_ids,
            do_sample=True,
            max_length=max_length,
            output_scores=output_scores,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
462
            remove_invalid_values=True,
463
464
            **beam_kwargs,
            **logits_warper_kwargs,
465
            **model_kwargs,
466
467
468
469
470
471
472
473
474
475
476
477
478
        )
        # beam_search does not automatically interleave `batch_size` dim for `num_beams * num_return_sequences`
        kwargs = {}
        if model.config.is_encoder_decoder:
            encoder_outputs, input_ids, attention_mask = self._get_encoder_outputs(
                model,
                input_ids,
                attention_mask,
                num_interleave=beam_scorer.num_beams * num_return_sequences,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )
            kwargs["encoder_outputs"] = encoder_outputs
479
        elif attention_mask is not None:
480
481
            attention_mask = attention_mask.repeat_interleave(beam_scorer.num_beams * num_return_sequences, dim=0)

482
483
484
485
        # prevent flaky generation test failures
        logits_processor = LogitsProcessorList()
        logits_processor.append(InfNanRemoveLogitsProcessor())

486
487
        torch.manual_seed(0)
        with torch.no_grad():
488
            model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
489
490
491
492
493
            output_beam_sample = model.beam_sample(
                input_ids.repeat_interleave(beam_scorer.num_beams * num_return_sequences, dim=0),
                beam_scorer,
                max_length=max_length,
                logits_warper=logits_warper,
494
                logits_processor=logits_processor,
495
496
497
498
499
                output_scores=output_scores,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict_in_generate=return_dict_in_generate,
                **kwargs,
500
                **model_kwargs,
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
            )

        return output_generate, output_beam_sample

    def _group_beam_search_generate(
        self,
        model,
        input_ids,
        attention_mask,
        max_length,
        beam_scorer,
        beam_kwargs,
        logits_processor,
        logits_process_kwargs,
        output_scores=False,
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
520
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
521
522
523
524
525
526
527
528
        output_generate = model.generate(
            input_ids,
            do_sample=False,
            max_length=max_length,
            output_scores=output_scores,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
529
            remove_invalid_values=True,
530
531
            **beam_kwargs,
            **logits_process_kwargs,
532
            **model_kwargs,
533
534
535
536
537
        )

        # group_beam_search does not automatically interleave `batch_size` dim for `num_beams`
        kwargs = {}
        if model.config.is_encoder_decoder:
538
            encoder_outputs, input_ids, attention_mask = self._get_encoder_outputs(
539
540
541
542
543
544
545
546
                model,
                input_ids,
                attention_mask,
                num_interleave=beam_scorer.num_beams,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )
            kwargs["encoder_outputs"] = encoder_outputs
547
548
        elif attention_mask is not None:
            attention_mask = attention_mask.repeat_interleave(beam_scorer.num_beams, dim=0)
549
550

        with torch.no_grad():
551
            model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
552
            output_group_beam_search = model.group_beam_search(
553
                input_ids.repeat_interleave(beam_scorer.num_beams, dim=0),
554
555
556
557
558
559
560
561
                beam_scorer,
                max_length=max_length,
                logits_processor=logits_processor,
                output_scores=output_scores,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict_in_generate=return_dict_in_generate,
                **kwargs,
562
                **model_kwargs,
563
564
565
            )
        return output_generate, output_group_beam_search

566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
    def _constrained_beam_search_generate(
        self,
        model,
        input_ids,
        attention_mask,
        max_length,
        constrained_beam_scorer,
        constraints,
        beam_kwargs,
        logits_processor,
        logits_process_kwargs,
        output_scores=False,
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
582
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
583
584
585
586
587
588
589
590
591
592
593
594
        output_generate = model.generate(
            input_ids,
            do_sample=False,
            max_length=max_length,
            output_scores=output_scores,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
            remove_invalid_values=True,
            constraints=constraints,
            **beam_kwargs,
            **logits_process_kwargs,
595
            **model_kwargs,
596
597
598
599
600
        )

        # group_beam_search does not automatically interleave `batch_size` dim for `num_beams`
        kwargs = {}
        if model.config.is_encoder_decoder:
601
            encoder_outputs, input_ids, attention_mask = self._get_encoder_outputs(
602
603
604
605
606
607
608
609
                model,
                input_ids,
                attention_mask,
                num_interleave=constrained_beam_scorer.num_beams,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )
            kwargs["encoder_outputs"] = encoder_outputs
610
611
        elif attention_mask is not None:
            attention_mask = attention_mask.repeat_interleave(constrained_beam_scorer.num_beams, dim=0)
612
613

        with torch.no_grad():
614
            model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
615
            output_group_beam_search = model.constrained_beam_search(
616
                input_ids.repeat_interleave(constrained_beam_scorer.num_beams, dim=0),
617
618
619
620
621
622
623
624
                constrained_beam_scorer,
                max_length=max_length,
                logits_processor=logits_processor,
                output_scores=output_scores,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict_in_generate=return_dict_in_generate,
                **kwargs,
625
                **model_kwargs,
626
627
628
            )
        return output_generate, output_group_beam_search

629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
    def _contrastive_generate(
        self,
        model,
        input_ids,
        attention_mask,
        max_length,
        output_scores=False,
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
        contrastive_search_kwargs = {
            "penalty_alpha": 0.6,
            "top_k": 5,
        }

        if model.config.is_encoder_decoder:
            max_length = 4
        logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
            input_ids.shape[-1],
            eos_token_id=model.config.eos_token_id,
            forced_bos_token_id=model.config.forced_bos_token_id,
            forced_eos_token_id=model.config.forced_eos_token_id,
            max_length=max_length,
        )

        kwargs = {}
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
        output_generate = model.generate(
            input_ids,
            do_sample=False,
            num_beams=1,
            max_length=max_length,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            output_scores=output_scores,
            return_dict_in_generate=return_dict_in_generate,
            remove_invalid_values=True,
            **logits_process_kwargs,
            **model_kwargs,
            **contrastive_search_kwargs,
        )

        if model.config.is_encoder_decoder:
            encoder_outputs, input_ids, attention_mask = self._get_encoder_outputs(
                model,
                input_ids,
                attention_mask,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )
            kwargs["encoder_outputs"] = encoder_outputs

        with torch.no_grad():
            model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
            stopping_criteria = StoppingCriteriaList([MaxLengthCriteria(max_length=max_length)])
            output_contrastive = model.contrastive_search(
                input_ids,
                stopping_criteria=stopping_criteria,
                logits_processor=logits_processor,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                output_scores=output_scores,
                return_dict_in_generate=return_dict_in_generate,
                **kwargs,
                **model_kwargs,
                **contrastive_search_kwargs,
            )
        return output_contrastive, output_generate

699
    def test_greedy_generate(self):
700
        # check `generate()` and `greedy_search()` are equal
701
702
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
703
704
705
706
            # test old generation output for backwards compatibility
            model = model_class(config).to(torch_device).eval()
            output_greedy, output_generate = self._greedy_generate(
                model=model, input_ids=input_ids, attention_mask=attention_mask, max_length=max_length
707
            )
708
            self.assertListEqual(output_greedy.tolist(), output_generate.tolist())
709

710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
    def test_greedy_generate_dict_outputs(self):
        for model_class in self.all_generative_model_classes:
            # disable cache
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
            config.use_cache = False
            model = model_class(config).to(torch_device).eval()
            output_greedy, output_generate = self._greedy_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_length=max_length,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )
726
727

            if model.config.is_encoder_decoder:
728
729
730
731
732
                self.assertIsInstance(output_greedy, GreedySearchEncoderDecoderOutput)
                self.assertIsInstance(output_generate, GreedySearchEncoderDecoderOutput)
            else:
                self.assertIsInstance(output_greedy, GreedySearchDecoderOnlyOutput)
                self.assertIsInstance(output_generate, GreedySearchDecoderOnlyOutput)
733

734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
            self.assertListEqual(output_generate.sequences.tolist(), output_greedy.sequences.tolist())

            for output in (output_greedy, output_generate):
                self._check_outputs(output, input_ids, model.config)

    def test_greedy_generate_dict_outputs_use_cache(self):
        for model_class in self.all_generative_model_classes:
            # enable cache
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()

            if not hasattr(config, "use_cache"):
                # only relevant if model has "use_cache"
                return

            config.use_cache = True
749
            config.is_decoder = True
750
751
752
753
            model = model_class(config).to(torch_device).eval()
            output_greedy, output_generate = self._greedy_generate(
                model=model,
                input_ids=input_ids,
754
755
                attention_mask=attention_mask,
                max_length=max_length,
756
757
758
759
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
760
            )
761

762
763
764
765
            self.assertListEqual(output_generate.sequences.tolist(), output_greedy.sequences.tolist())

            for output in (output_greedy, output_generate):
                self._check_outputs(output, input_ids, model.config, use_cache=True)
766
767
768
769

    def test_sample_generate(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
770
            model = model_class(config).to(torch_device).eval()
771
772
773
774

            if model.config.is_encoder_decoder:
                max_length = 4

775
776
777
778
779
780
781
782
783
            process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
                input_ids.shape[-1],
                model.config.eos_token_id,
                forced_bos_token_id=model.config.forced_bos_token_id,
                forced_eos_token_id=model.config.forced_eos_token_id,
                max_length=max_length,
            )
            logits_warper_kwargs, logits_warper = self._get_warper_and_kwargs(num_beams=1)

784
785
786
787
788
            # check `generate()` and `sample()` are equal
            output_sample, output_generate = self._sample_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
789
                max_length=max_length,
790
791
792
793
794
795
796
797
798
799
800
801
                num_return_sequences=1,
                logits_processor=logits_processor,
                logits_warper=logits_warper,
                logits_warper_kwargs=logits_warper_kwargs,
                process_kwargs=process_kwargs,
            )
            self.assertListEqual(output_sample.tolist(), output_generate.tolist())

            # check `generate()` and `sample()` yield equal results for `num_return_sequences`
            output_sample, output_generate = self._sample_generate(
                model=model,
                input_ids=input_ids,
802
                attention_mask=attention_mask,
803
804
805
806
807
808
                max_length=max_length,
                num_return_sequences=3,
                logits_processor=logits_processor,
                logits_warper=logits_warper,
                logits_warper_kwargs=logits_warper_kwargs,
                process_kwargs=process_kwargs,
809
            )
810
            self.assertListEqual(output_sample.tolist(), output_generate.tolist())
811

812
813
814
815
816
817
    def test_sample_generate_dict_output(self):
        for model_class in self.all_generative_model_classes:
            # disable cache
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
            config.use_cache = False
            model = model_class(config).to(torch_device).eval()
818
819
820
            if model.config.is_encoder_decoder:
                max_length = 4

821
            process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
822
823
824
825
826
                input_ids.shape[-1],
                model.config.eos_token_id,
                forced_bos_token_id=model.config.forced_bos_token_id,
                forced_eos_token_id=model.config.forced_eos_token_id,
                max_length=max_length,
827
828
            )
            logits_warper_kwargs, logits_warper = self._get_warper_and_kwargs(num_beams=1)
829

830
831
832
            output_sample, output_generate = self._sample_generate(
                model=model,
                input_ids=input_ids,
833
                attention_mask=attention_mask,
834
835
836
837
838
839
840
841
842
843
                max_length=max_length,
                num_return_sequences=2,
                logits_processor=logits_processor,
                logits_warper=logits_warper,
                logits_warper_kwargs=logits_warper_kwargs,
                process_kwargs=process_kwargs,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
844
845
846
            )

            if model.config.is_encoder_decoder:
847
848
                self.assertIsInstance(output_sample, SampleEncoderDecoderOutput)
                self.assertIsInstance(output_generate, SampleEncoderDecoderOutput)
849
            else:
850
851
852
853
854
855
856
                self.assertIsInstance(output_sample, SampleDecoderOnlyOutput)
                self.assertIsInstance(output_generate, SampleDecoderOnlyOutput)

            self.assertListEqual(output_generate.sequences.tolist(), output_sample.sequences.tolist())

            for output in (output_sample, output_generate):
                self._check_outputs(output, input_ids, model.config, num_return_sequences=2)
857
858
859
860

    def test_beam_search_generate(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
861
862
863
864
865

            # It is important set set the eos_token_id to None to ensure that no sequences
            # shorter than `max_length` can be generated which could lead to flaky circle ci
            # failures if the top `num_return_sequences` beams are all shorter than the longest beam
            config.eos_token_id = None
866
            config.forced_eos_token_id = None
867

868
            model = model_class(config).to(torch_device).eval()
869
870
            if model.config.is_encoder_decoder:
                max_length = 4
871
872

            logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
873
874
875
876
877
                input_ids.shape[-1],
                config.eos_token_id,
                config.forced_bos_token_id,
                config.forced_eos_token_id,
                max_length,
878
879
            )
            beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs(input_ids.shape[0], max_length)
880
881
882
883
884

            # check `generate()` and `beam_search()` are equal
            output_generate, output_beam_search = self._beam_search_generate(
                model=model,
                input_ids=input_ids,
885
886
                attention_mask=attention_mask,
                max_length=max_length,
887
888
889
890
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
                logits_processor=logits_processor,
891
            )
892

893
            self.assertListEqual(output_generate.tolist(), output_beam_search.tolist())
894
895
896
897
898
899
900
901
902

            # check `generate()` and `beam_search()` are equal for `num_return_sequences`
            num_return_sequences = 2
            if model.config.is_encoder_decoder:
                max_length = 4
            beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs(
                input_ids.shape[0], max_length, num_return_sequences=num_return_sequences
            )

903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
            output_generate, output_beam_search = self._beam_search_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_length=max_length,
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
                logits_processor=logits_processor,
            )
            self.assertListEqual(output_generate.tolist(), output_beam_search.tolist())

    def test_beam_search_generate_dict_output(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
918
919

            # disable cache
920
            config.use_cache = False
921
922
923
924
925

            # It is important set set the eos_token_id to None to ensure that no sequences
            # shorter than `max_length` can be generated which could lead to flaky circle ci
            # failures if the top `num_return_sequences` beams are all shorter than the longest beam
            config.eos_token_id = None
926
            config.forced_eos_token_id = None
927

928
929
930
            model = model_class(config).to(torch_device).eval()
            if model.config.is_encoder_decoder:
                max_length = 4
931
932
933
934
935
936
937
938

            logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
                input_ids.shape[-1],
                config.eos_token_id,
                config.forced_bos_token_id,
                config.forced_eos_token_id,
                max_length,
            )
939
940
941
942
            beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs(input_ids.shape[0], max_length)
            output_generate, output_beam_search = self._beam_search_generate(
                model=model,
                input_ids=input_ids,
943
944
                attention_mask=attention_mask,
                max_length=max_length,
945
946
947
948
949
950
951
952
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
                logits_processor=logits_processor,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
953
954
            )
            if model.config.is_encoder_decoder:
955
956
                self.assertIsInstance(output_beam_search, BeamSearchEncoderDecoderOutput)
                self.assertIsInstance(output_generate, BeamSearchEncoderDecoderOutput)
957
            else:
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
                self.assertIsInstance(output_beam_search, BeamSearchDecoderOnlyOutput)
                self.assertIsInstance(output_generate, BeamSearchDecoderOnlyOutput)

            self.assertListEqual(output_generate.sequences.tolist(), output_beam_search.sequences.tolist())
            self.assertTrue(
                torch.allclose(output_generate["sequences_scores"], output_beam_search["sequences_scores"], atol=1e-3)
            )
            self.assertTrue(output_generate["sequences_scores"].shape == (output_generate["sequences"].shape[0],))
            self.assertTrue((output_generate["sequences_scores"] < 0).all().item())

            for output in (output_beam_search, output_generate):
                self._check_outputs(output, input_ids, model.config, num_return_sequences=beam_scorer.num_beams)

    def test_beam_search_generate_dict_outputs_use_cache(self):
        for model_class in self.all_generative_model_classes:
            # enable cache
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()

976
977
978
979
            # It is important set set the eos_token_id to None to ensure that no sequences
            # shorter than `max_length` can be generated which could lead to flaky circle ci
            # failures if the top `num_return_sequences` beams are all shorter than the longest beam
            config.eos_token_id = None
980
            config.forced_eos_token_id = None
981

982
983
984
985
986
            if not hasattr(config, "use_cache"):
                # only relevant if model has "use_cache"
                return

            model = model_class(config).to(torch_device).eval()
987
988
            if model.config.is_encoder_decoder:
                max_length = 4
989
990

            logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
991
992
993
994
995
                input_ids.shape[-1],
                config.eos_token_id,
                config.forced_bos_token_id,
                config.forced_eos_token_id,
                max_length,
996
997
998
999
1000
            )

            beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs(input_ids.shape[0], max_length)

            config.use_cache = True
1001
            config.is_decoder = True
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
            model = model_class(config).to(torch_device).eval()
            output_beam, output_generate = self._beam_search_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_length=max_length,
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
                logits_processor=logits_processor,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

            self.assertListEqual(output_generate.sequences.tolist(), output_beam.sequences.tolist())

            for output in (output_beam, output_generate):
                self._check_outputs(
                    output, input_ids, model.config, use_cache=True, num_return_sequences=beam_scorer.num_beams
1023
1024
1025
1026
1027
                )

    def test_beam_sample_generate(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
1028
1029
1030
1031
1032

            # It is important set set the eos_token_id to None to ensure that no sequences
            # shorter than `max_length` can be generated which could lead to flaky circle ci
            # failures if the top `num_return_sequences` beams are all shorter than the longest beam
            config.eos_token_id = None
1033
            config.forced_eos_token_id = None
1034

1035
1036
            logits_warper_kwargs, logits_warper = self._get_warper_and_kwargs(num_beams=1)

1037
            model = model_class(config).to(torch_device).eval()
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047

            # check `generate()` and `beam_search()` are equal
            # change `num_return_sequences = 2` but not for `beam_scorer`
            num_return_sequences = 2
            if model.config.is_encoder_decoder:
                max_length = 4
            beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs(
                input_ids.shape[0] * num_return_sequences, max_length
            )
            beam_kwargs["num_return_sequences"] = num_return_sequences
1048
1049
1050
1051

            output_generate, output_beam_sample = self._beam_sample_generate(
                model=model,
                input_ids=input_ids,
1052
1053
                attention_mask=attention_mask,
                max_length=max_length,
1054
1055
1056
1057
1058
                num_return_sequences=num_return_sequences,
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_warper=logits_warper,
                logits_warper_kwargs=logits_warper_kwargs,
1059
            )
1060
1061
1062
1063
1064
            self.assertListEqual(output_generate.tolist(), output_beam_sample.tolist())

    def test_beam_sample_generate_dict_output(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
1065
1066

            # disable cache
1067
            config.use_cache = False
1068
1069
1070
1071
1072

            # It is important set set the eos_token_id to None to ensure that no sequences
            # shorter than `max_length` can be generated which could lead to flaky circle ci
            # failures if the top `num_return_sequences` beams are all shorter than the longest beam
            config.eos_token_id = None
1073
            config.forced_eos_token_id = None
1074

1075
1076
1077
1078
            model = model_class(config).to(torch_device).eval()
            logits_warper_kwargs, logits_warper = self._get_warper_and_kwargs(num_beams=1)

            num_return_sequences = 2
1079
            if model.config.is_encoder_decoder:
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
                max_length = 4
            beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs(
                input_ids.shape[0] * num_return_sequences, max_length
            )
            beam_kwargs["num_return_sequences"] = num_return_sequences

            output_beam_sample, output_generate = self._beam_sample_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_length=max_length,
                num_return_sequences=num_return_sequences,
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_warper=logits_warper,
                logits_warper_kwargs=logits_warper_kwargs,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

            if model.config.is_encoder_decoder:
1103
1104
                self.assertIsInstance(output_beam_sample, BeamSampleEncoderDecoderOutput)
                self.assertIsInstance(output_generate, BeamSampleEncoderDecoderOutput)
1105
            else:
1106
1107
                self.assertIsInstance(output_beam_sample, BeamSampleDecoderOnlyOutput)
                self.assertIsInstance(output_generate, BeamSampleDecoderOnlyOutput)
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118

            self.assertListEqual(output_generate.sequences.tolist(), output_beam_sample.sequences.tolist())
            self.assertTrue(
                torch.allclose(output_generate["sequences_scores"], output_beam_sample["sequences_scores"], atol=1e-3)
            )
            self.assertTrue(output_generate["sequences_scores"].shape == (output_generate["sequences"].shape[0],))
            self.assertTrue((output_generate["sequences_scores"] < 0).all().item())

            for output in (output_beam_sample, output_generate):
                self._check_outputs(
                    output, input_ids, model.config, num_return_sequences=num_return_sequences * beam_scorer.num_beams
1119
1120
                )

1121
1122
    def test_generate_without_input_ids(self):
        config, _, _, max_length = self._get_input_ids_and_config()
1123

1124
1125
1126
        # if no bos token id => cannot generate from None
        if config.bos_token_id is None:
            return
1127

1128
1129
1130
        for model_class in self.all_generative_model_classes:
            model = model_class(config).to(torch_device)
            model.eval()
1131

1132
            output_ids_generate = model.generate(do_sample=False, max_length=max_length, remove_invalid_values=True)
1133
            self.assertIsNotNone(output_ids_generate)
1134

1135
1136
1137
1138
    def test_group_beam_search_generate(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()

1139
1140
1141
1142
            # It is important set set the eos_token_id to None to ensure that no sequences
            # shorter than `max_length` can be generated which could lead to flaky circle ci
            # failures if the top `num_return_sequences` beams are all shorter than the longest beam
            config.eos_token_id = None
1143
1144
1145
1146
1147
            config.forced_eos_token_id = None

            model = model_class(config).to(torch_device).eval()
            if model.config.is_encoder_decoder:
                max_length = 4
1148

1149
            logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
1150
1151
1152
1153
1154
1155
                input_ids.shape[-1],
                config.eos_token_id,
                config.forced_bos_token_id,
                config.forced_eos_token_id,
                max_length,
                diversity_penalty=2.0,
1156
1157
1158
1159
            )

            # check `generate()` and `group_beam_search()` are equal
            beam_kwargs, beam_scorer = self._get_diverse_beam_scorer_and_kwargs(input_ids.shape[0], max_length)
1160
1161
1162
            output_generate, output_group_beam_search = self._group_beam_search_generate(
                model=model,
                input_ids=input_ids,
1163
1164
                attention_mask=attention_mask,
                max_length=max_length,
1165
1166
1167
1168
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_processor=logits_processor,
                logits_process_kwargs=logits_process_kwargs,
1169
            )
1170
            self.assertListEqual(output_generate.tolist(), output_group_beam_search.tolist())
1171
1172
1173
1174
1175
1176
1177
1178

            # check `generate()` and `group_beam_search()` are equal for `num_return_sequences`
            num_return_sequences = 2
            if model.config.is_encoder_decoder:
                max_length = 4
            beam_kwargs, beam_scorer = self._get_diverse_beam_scorer_and_kwargs(
                input_ids.shape[0], max_length, num_return_sequences=num_return_sequences
            )
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
            output_generate, output_group_beam_search = self._group_beam_search_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_length=max_length,
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_processor=logits_processor,
                logits_process_kwargs=logits_process_kwargs,
            )
            self.assertListEqual(output_generate.tolist(), output_group_beam_search.tolist())
1190

1191
1192
1193
1194
    def test_group_beam_search_generate_dict_output(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
            config.use_cache = False
1195
1196
1197
1198
1199

            # It is important set set the eos_token_id to None to ensure that no sequences
            # shorter than `max_length` can be generated which could lead to flaky circle ci
            # failures if the top `num_return_sequences` beams are all shorter than the longest beam
            config.eos_token_id = None
1200
            config.forced_eos_token_id = None
1201

1202
            model = model_class(config).to(torch_device).eval()
1203
1204
            if model.config.is_encoder_decoder:
                max_length = 4
1205
1206

            logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
1207
1208
1209
1210
1211
1212
                input_ids.shape[-1],
                config.eos_token_id,
                config.forced_bos_token_id,
                config.forced_eos_token_id,
                max_length,
                diversity_penalty=2.0,
1213
1214
1215
1216
1217
1218
1219
1220
1221
            )

            num_return_sequences = 1
            beam_kwargs, beam_scorer = self._get_diverse_beam_scorer_and_kwargs(
                input_ids.shape[0], max_length, num_return_sequences=num_return_sequences
            )
            output_generate, output_group_beam_search = self._group_beam_search_generate(
                model=model,
                input_ids=input_ids,
1222
1223
                attention_mask=attention_mask,
                max_length=max_length,
1224
1225
1226
1227
1228
1229
1230
1231
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_processor=logits_processor,
                logits_process_kwargs=logits_process_kwargs,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
1232
1233
            )
            if model.config.is_encoder_decoder:
1234
1235
                self.assertIsInstance(output_group_beam_search, BeamSearchEncoderDecoderOutput)
                self.assertIsInstance(output_generate, BeamSearchEncoderDecoderOutput)
1236
            else:
1237
1238
1239
1240
1241
1242
1243
                self.assertIsInstance(output_group_beam_search, BeamSearchDecoderOnlyOutput)
                self.assertIsInstance(output_generate, BeamSearchDecoderOnlyOutput)

            self.assertListEqual(output_generate.sequences.tolist(), output_group_beam_search.sequences.tolist())
            self.assertTrue(
                torch.allclose(
                    output_generate["sequences_scores"], output_group_beam_search["sequences_scores"], atol=1e-3
1244
                )
1245
1246
1247
1248
1249
1250
1251
1252
1253
            )
            self.assertTrue(output_generate["sequences_scores"].shape == (output_generate["sequences"].shape[0],))
            self.assertTrue((output_generate["sequences_scores"] < 0).all().item())

            for output in (output_group_beam_search, output_generate):
                self._check_outputs(
                    output, input_ids, model.config, num_return_sequences=num_return_sequences * beam_scorer.num_beams
                )

1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
    def test_constrained_beam_search_generate(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()

            # It is important set set the eos_token_id to None to ensure that no sequences
            # shorter than `max_length` can be generated which could lead to flaky circle ci
            # failures if the top `num_return_sequences` beams are all shorter than the longest beam
            config.eos_token_id = None
            config.forced_eos_token_id = None

            model = model_class(config).to(torch_device).eval()
            max_length = 20

            logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
                input_ids.shape[-1],
                config.eos_token_id,
                config.forced_bos_token_id,
                config.forced_eos_token_id,
                max_length,
            )

            # check `generate()` and `constrained_beam_search()` are equal
            # Sample constraints
            if not input_ids.dtype == torch.float32:
                min_id = torch.min(input_ids) + 3
                max_id = torch.max(input_ids)
            else:
                # otherwise this throws an error for Speech2TextModel since its inputs are floating points
                min_id = 3
                max_id = 100

1285
            force_tokens = torch.randint(min_id, max_id, (1, 2)).tolist()[0]
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
            constraints = [
                PhrasalConstraint(force_tokens),
            ]

            beam_kwargs, beam_scorer = self._get_constrained_beam_scorer_and_kwargs(
                input_ids.shape[0], max_length, constraints, num_return_sequences=1
            )
            output_generate, output_beam_search = self._constrained_beam_search_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_length=max_length,
                constrained_beam_scorer=beam_scorer,
                constraints=constraints,
                beam_kwargs=beam_kwargs,
                logits_processor=logits_processor,
                logits_process_kwargs=logits_process_kwargs,
            )
            self.assertListEqual(output_generate.tolist(), output_beam_search.tolist())
            for generation_output in output_generate:
                self._check_sequence_inside_sequence(force_tokens, generation_output)

            # check `generate()` and `constrained_beam_search()` are equal for `num_return_sequences`
            # Sample constraints
1310
            force_tokens = torch.randint(min_id, max_id, (1, 2)).tolist()[0]
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
            constraints = [
                PhrasalConstraint(force_tokens),
            ]

            num_return_sequences = 2
            max_length = 20

            beam_kwargs, beam_scorer = self._get_constrained_beam_scorer_and_kwargs(
                input_ids.shape[0], max_length, constraints, num_return_sequences=num_return_sequences
            )

            output_generate, output_beam_search = self._constrained_beam_search_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_length=max_length,
                constrained_beam_scorer=beam_scorer,
                constraints=constraints,
                beam_kwargs=beam_kwargs,
                logits_processor=logits_processor,
                logits_process_kwargs=logits_process_kwargs,
            )
            self.assertListEqual(output_generate.tolist(), output_beam_search.tolist())

            for generation_output in output_generate:
                self._check_sequence_inside_sequence(force_tokens, generation_output)

    def test_constrained_beam_search_generate_dict_output(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()

            # disable cache
            config.use_cache = False

            # It is important set set the eos_token_id to None to ensure that no sequences
            # shorter than `max_length` can be generated which could lead to flaky circle ci
            # failures if the top `num_return_sequences` beams are all shorter than the longest beam
            config.eos_token_id = None
            config.forced_eos_token_id = None

            model = model_class(config).to(torch_device).eval()
            if model.config.is_encoder_decoder:
                max_length = 20

            logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
                input_ids.shape[-1],
                config.eos_token_id,
                config.forced_bos_token_id,
                config.forced_eos_token_id,
                max_length,
            )

            # Sample constraints
            if not input_ids.dtype == torch.float32:
                min_id = torch.min(input_ids) + 3
                max_id = torch.max(input_ids)
            else:
                # otherwise this throws an error for Speech2TextModel since its inputs are floating points
                min_id = 3
                max_id = 100
1371
            force_tokens = torch.randint(min_id, max_id, (1, 2)).tolist()[0]
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
            constraints = [
                PhrasalConstraint(force_tokens),
            ]

            beam_kwargs, beam_scorer = self._get_constrained_beam_scorer_and_kwargs(
                input_ids.shape[0], max_length, constraints, num_return_sequences=1
            )
            output_generate, output_beam_search = self._constrained_beam_search_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_length=max_length,
                constrained_beam_scorer=beam_scorer,
                constraints=constraints,
                beam_kwargs=beam_kwargs,
                logits_processor=logits_processor,
                logits_process_kwargs=logits_process_kwargs,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

            if model.config.is_encoder_decoder:
                self.assertIsInstance(output_beam_search, BeamSearchEncoderDecoderOutput)
                self.assertIsInstance(output_generate, BeamSearchEncoderDecoderOutput)
            else:
                self.assertIsInstance(output_beam_search, BeamSearchDecoderOnlyOutput)
                self.assertIsInstance(output_generate, BeamSearchDecoderOnlyOutput)

            self.assertListEqual(output_generate.sequences.tolist(), output_beam_search.sequences.tolist())
            self.assertTrue(
                torch.allclose(output_generate["sequences_scores"], output_beam_search["sequences_scores"], atol=1e-3)
            )
            self.assertTrue(output_generate["sequences_scores"].shape == (output_generate["sequences"].shape[0],))
            self.assertTrue((output_generate["sequences_scores"] < 0).all().item())

            for output in (output_beam_search, output_generate):
                self._check_outputs(output, input_ids, model.config, num_return_sequences=beam_scorer.num_beams)

1412
1413
1414
1415
1416
    def test_contrastive_generate(self):
        # check `generate()` and `contrastive_search()` are equal
        for model_class in self.all_generative_model_classes:

            # won't fix: FSMT and Reformer have a different cache variable type (and format).
1417
            if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer"]):
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
                return

            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()

            # NOTE: contrastive search only works with cache on at the moment.
            if not hasattr(config, "use_cache"):
                return
            config.use_cache = True
            config.is_decoder = True

            # test old generation output for backwards compatibility
            model = model_class(config).to(torch_device).eval()
            output_contrastive, output_generate = self._contrastive_generate(
                model=model, input_ids=input_ids, attention_mask=attention_mask, max_length=max_length
            )
            self.assertListEqual(output_contrastive.tolist(), output_generate.tolist())

    def test_contrastive_generate_dict_outputs_use_cache(self):
        for model_class in self.all_generative_model_classes:

            # won't fix: FSMT and Reformer have a different cache variable type (and format).
1439
            if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer"]):
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
                return

            # enable cache
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()

            # NOTE: contrastive search only works with cache on at the moment.
            if not hasattr(config, "use_cache"):
                return
            config.use_cache = True
            config.is_decoder = True

            model = model_class(config).to(torch_device).eval()
            output_contrastive, output_generate = self._contrastive_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_length=max_length,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

            self.assertListEqual(output_generate.sequences.tolist(), output_contrastive.sequences.tolist())

            for output in (output_contrastive, output_generate):
                self._check_outputs(output, input_ids, model.config, use_cache=True)

1468
1469
1470
1471
1472
    def test_generate_with_head_masking(self):
        """Test designed for encoder-decoder models to ensure the attention head masking is used."""
        attention_names = ["encoder_attentions", "decoder_attentions", "cross_attentions"]
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
1473
            model = model_class(config).to(torch_device)
1474
1475
1476
1477
1478
            # We want to test only encoder-decoder models
            if not config.is_encoder_decoder:
                continue

            head_masking = {
1479
1480
1481
1482
1483
1484
1485
                "head_mask": torch.zeros(config.encoder_layers, config.encoder_attention_heads, device=torch_device),
                "decoder_head_mask": torch.zeros(
                    config.decoder_layers, config.decoder_attention_heads, device=torch_device
                ),
                "cross_attn_head_mask": torch.zeros(
                    config.decoder_layers, config.decoder_attention_heads, device=torch_device
                ),
1486
1487
1488
1489
            }

            signature = inspect.signature(model.forward)
            # We want to test only models where encoder/decoder head masking is implemented
1490
            if not set(head_masking.keys()) < set([*signature.parameters.keys()]):
1491
1492
1493
1494
1495
                continue

            for attn_name, (name, mask) in zip(attention_names, head_masking.items()):
                out = model.generate(
                    input_ids,
1496
                    attention_mask=attention_mask,
1497
1498
1499
                    num_beams=1,
                    output_attentions=True,
                    return_dict_in_generate=True,
1500
                    remove_invalid_values=True,
1501
1502
1503
1504
1505
1506
                    **{name: mask},
                )
                # We check the state of decoder_attentions and cross_attentions just from the last step
                attn_weights = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
                self.assertEqual(sum([w.sum().item() for w in attn_weights]), 0.0)

1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
    def _check_outputs(self, output, input_ids, config, use_cache=False, num_return_sequences=1):
        batch_size, seq_length = input_ids.shape
        num_sequences_in_output = batch_size * num_return_sequences
        gen_len = (
            output.sequences.shape[-1] - 1 if config.is_encoder_decoder else output.sequences.shape[-1] - seq_length
        )

        # scores
        self._check_scores(num_sequences_in_output, output.scores, length=gen_len, config=config)

        # Attentions
        if config.is_encoder_decoder:
            # encoder
1520
            self._check_encoder_attention_for_generate(output.encoder_attentions, batch_size, config, seq_length)
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
            # decoder
            self._check_attentions_for_generate(
                num_sequences_in_output,
                output.decoder_attentions,
                min_length=1,
                max_length=output.sequences.shape[-1],
                config=config,
                use_cache=use_cache,
            )
        else:
            # if use_cache first input is equal to no use_cache, so skip here
            attentions = output.attentions if not use_cache else output.attentions[1:]
            min_length = seq_length if not use_cache else seq_length + 1
            self._check_attentions_for_generate(
                num_sequences_in_output,
                attentions=attentions,
                min_length=min_length,
                max_length=output.sequences.shape[-1],
                config=config,
                use_cache=use_cache,
            )

        # Hidden States
        if config.is_encoder_decoder:
            # encoder
1546
1547
            self._check_encoder_hidden_states_for_generate(
                output.encoder_hidden_states, batch_size, config, seq_length
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
            )

            # decoder
            self._check_hidden_states_for_generate(
                num_sequences_in_output,
                output.decoder_hidden_states,
                min_length=1,
                max_length=output.sequences.shape[-1],
                config=config,
                use_cache=use_cache,
            )
        else:
            # if use_cache first input is equal to no use_cache, so skip here
            hidden_states = output.hidden_states if not use_cache else output.hidden_states[1:]
            min_length = seq_length if not use_cache else seq_length + 1
            self._check_hidden_states_for_generate(
                num_sequences_in_output,
                hidden_states,
                min_length=min_length,
                max_length=output.sequences.shape[-1],
                config=config,
                use_cache=use_cache,
            )

    def _check_scores(self, batch_size, scores, length, config):
        expected_shape = (batch_size, config.vocab_size)
        self.assertIsInstance(scores, tuple)
        self.assertEqual(len(scores), length)
        self.assertListEqual([iter_scores.shape for iter_scores in scores], [expected_shape] * len(scores))

    def _check_attentions_for_generate(
        self, batch_size, attentions, min_length, max_length, config, use_cache=False, num_beam_groups=1
    ):
        self.assertIsInstance(attentions, tuple)
        self.assertListEqual(
            [isinstance(iter_attentions, tuple) for iter_attentions in attentions], [True] * len(attentions)
        )
        self.assertEqual(len(attentions), (max_length - min_length) * num_beam_groups)

        for idx, iter_attentions in enumerate(attentions):
            tgt_len = min_length + idx if not use_cache else 1
            src_len = min_length + idx

            expected_shape = (
                batch_size * num_beam_groups,
                config.num_attention_heads,
                tgt_len,
                src_len,
            )
            # check attn size
            self.assertListEqual(
                [layer_attention.shape for layer_attention in iter_attentions], [expected_shape] * len(iter_attentions)
            )

1602
1603
1604
1605
1606
1607
1608
1609
    def _check_encoder_attention_for_generate(self, attentions, batch_size, config, seq_length):
        encoder_expected_shape = (batch_size, config.num_attention_heads, seq_length, seq_length)
        self.assertIsInstance(attentions, tuple)
        self.assertListEqual(
            [layer_attentions.shape for layer_attentions in attentions],
            [encoder_expected_shape] * len(attentions),
        )

1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
    def _check_hidden_states_for_generate(
        self, batch_size, hidden_states, min_length, max_length, config, use_cache=False, num_beam_groups=1
    ):
        self.assertIsInstance(hidden_states, tuple)
        self.assertListEqual(
            [isinstance(iter_hidden_states, tuple) for iter_hidden_states in hidden_states],
            [True] * len(hidden_states),
        )
        self.assertEqual(len(hidden_states), (max_length - min_length) * num_beam_groups)

        for idx, iter_hidden_states in enumerate(hidden_states):
            seq_len = min_length + idx if not use_cache else 1
            expected_shape = (batch_size * num_beam_groups, seq_len, config.hidden_size)
            # check hidden size
            self.assertListEqual(
                [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states],
                [expected_shape] * len(iter_hidden_states),
            )
1628

1629
1630
1631
1632
1633
1634
1635
1636
    def _check_encoder_hidden_states_for_generate(self, hidden_states, batch_size, config, seq_length):
        encoder_expected_shape = (batch_size, seq_length, config.hidden_size)
        self.assertIsInstance(hidden_states, tuple)
        self.assertListEqual(
            [layer_hidden_states.shape for layer_hidden_states in hidden_states],
            [encoder_expected_shape] * len(hidden_states),
        )

1637
    def _check_sequence_inside_sequence(self, tensor_1, tensor_2):
1638
        # check if tensor_1 inside tensor_2 or tensor_2 inside tensor_1.
1639
1640
        # set to same device. we don't care what device.

1641
1642
1643
1644
1645
1646
        if not isinstance(tensor_1, list):
            tensor_1 = tensor_1.cpu().tolist()
        if not isinstance(tensor_2, list):
            tensor_2 = tensor_2.cpu().tolist()

        in_order = len(tensor_1) <= len(tensor_2)
1647
1648
1649
1650
        longer = tensor_2 if in_order else tensor_1
        shorter = tensor_1 if in_order else tensor_2

        flag = False
1651
1652
        chunk_size = len(shorter)
        for chunk_idx in range(len(longer) - chunk_size + 1):
1653
            subseq = longer[chunk_idx : chunk_idx + chunk_size]
1654
            if subseq == shorter:
1655
1656
1657
1658
1659
                flag = True
                break

        self.assertTrue(flag)

1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763

@require_torch
class UtilsFunctionsTest(unittest.TestCase):

    # tests whether the top_k_top_p function behaves as expected
    def test_top_k_top_p_filtering(self):
        logits = torch.tensor(
            [
                [
                    8.2220991,  # 3rd highest value; idx. 0
                    -0.5620044,
                    5.23229752,
                    4.0386393,
                    -6.8798378,
                    -0.54785802,
                    -3.2012153,
                    2.92777176,
                    1.88171953,
                    7.35341276,
                    8.43207833,  # 2nd highest value; idx. 10
                    -9.85711836,
                    -5.96209236,
                    -1.13039161,
                    -7.1115294,
                    -0.8369633,
                    -5.3186408,
                    7.06427407,
                    0.81369344,
                    -0.82023817,
                    -5.9179796,
                    0.58813443,
                    -6.99778438,
                    4.71551189,
                    -0.18771637,
                    7.44020759,  # 4th highest value; idx. 25
                    9.38450987,  # 1st highest value; idx. 26
                    2.12662941,
                    -9.32562038,
                    2.35652522,
                ],  # cummulative prob of 4 highest values <= 0.6
                [
                    0.58425518,
                    4.53139238,
                    -5.57510464,
                    -6.28030699,
                    -7.19529503,
                    -4.02122551,
                    1.39337037,
                    -6.06707057,
                    1.59480517,
                    -9.643119,
                    0.03907799,
                    0.67231762,
                    -8.88206726,
                    6.27115922,  # 4th highest value; idx. 13
                    2.28520723,
                    4.82767506,
                    4.30421368,
                    8.8275313,  # 2nd highest value; idx. 17
                    5.44029958,
                    -4.4735794,
                    7.38579536,  # 3rd highest value; idx. 20
                    -2.91051663,
                    2.61946077,
                    -2.5674762,
                    -9.48959302,
                    -4.02922645,
                    -1.35416918,
                    9.67702323,  # 1st highest value; idx. 27
                    -5.89478553,
                    1.85370467,
                ],  # cummulative prob of 4 highest values <= 0.6
            ],
            dtype=torch.float,
            device=torch_device,
        )

        non_inf_expected_idx = torch.tensor(
            [[0, 0], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 20], [1, 27]],
            dtype=torch.long,
            device=torch_device,
        )  # expected non filtered idx as noted above

        non_inf_expected_output = torch.tensor(
            [
                8.2221,
                8.4321,
                7.4402,
                9.3845,
                6.2712,
                8.8275,
                7.3858,
                9.6770,
            ],  # expected non filtered values as noted above
            dtype=torch.float,
            device=torch_device,
        )

        output = top_k_top_p_filtering(logits, top_k=10, top_p=0.6, min_tokens_to_keep=4)
        non_inf_output = output[output != -float("inf")].to(device=torch_device)
        non_inf_idx = (output != -float("inf")).nonzero().to(device=torch_device)

        self.assertTrue(torch.allclose(non_inf_expected_output, non_inf_output, atol=1e-12))
        self.assertTrue(torch.all(torch.eq(non_inf_expected_idx, non_inf_idx)))
1764

1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
    # tests whether the function uses filter_value instead of default -inf
    def test_top_k_top_p_filtering_with_filter_value(self):
        logits = torch.tensor(
            [
                [
                    1,
                    1,
                    1,
                    0.99,  # get filtered by top-p filtering
                    0.98,  # get filtered by top-k filtering
                ]
            ],
            dtype=torch.float,
            device=torch_device,
        )

        expected_output = torch.tensor(
            [[1, 1, 1, 0, 0]],
            dtype=torch.float,
            device=torch_device,
        )

        output = top_k_top_p_filtering(logits, top_k=4, top_p=0.5, filter_value=0.0)

        self.assertTrue(torch.allclose(expected_output, output, atol=1e-12))

1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805

@require_torch
class GenerationIntegrationTests(unittest.TestCase):
    @slow
    def test_diverse_beam_search(self):
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood.
        The celebrity couple announced the arrival of their son, Silas Randall Timberlake, in statements to People.
        "Silas was the middle name of Timberlake's maternal grandfather Bill Bomar, who died in 2012, while Randall is the musician's own middle name, as well as his father's first," People reports.
        The couple announced the pregnancy in January, with an Instagram post. It is the first baby for both."""

        bart_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
        bart_model = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn").to(torch_device)
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        outputs = bart_model.generate(
1806
1807
1808
1809
1810
1811
            input_ids,
            num_beams=4,
            num_return_sequences=2,
            num_beam_groups=4,
            diversity_penalty=2.0,
            remove_invalid_values=True,
1812
1813
1814
1815
1816
1817
1818
        )

        generated_text = bart_tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
Sylvain Gugger's avatar
Sylvain Gugger committed
1819
1820
1821
1822
1823
1824
                "The couple announced the birth of their son, Silas Randall Timberlake, in a statement. Silas was the"
                " middle name of Timberlake's maternal grandfather Bill Bomar. Randall is the musician's own middle"
                " name, as well as his father's first. It is the first baby for both of them.",
                "Justin Timberlake and Jessica Biel have a son. The baby is named Silas Randall Timberlake. It is the"
                " first child for both. The couple announced the pregnancy in January. The name Silas is the middle"
                " name of Timberlake's maternal grandfather. It's also his own middle name.",
1825
1826
            ],
        )
1827
1828
1829

    def test_max_length_backward_compat_greedy(self):
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
1830
1831
1832
1833
        bart_tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
1834
1835
1836
1837
1838
1839
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        max_length = 20
        input_ids = input_ids.expand(2, -1)
        model_kwargs = bart_model._prepare_encoder_decoder_kwargs_for_generation(input_ids, {})
        input_ids = bart_model._prepare_decoder_input_ids_for_generation(
1840
            input_ids.shape[0],
1841
1842
1843
1844
            decoder_start_token_id=bart_model.config.decoder_start_token_id,
            bos_token_id=bart_model.config.bos_token_id,
        )

1845
1846
1847
1848
1849
1850
1851
1852
        with self.assertWarns(UserWarning):
            bart_model.greedy_search(
                input_ids,
                max_length=max_length,
                pad_token_id=bart_model.config.pad_token_id,
                eos_token_id=bart_model.config.eos_token_id,
                **model_kwargs,
            )
1853
1854
1855

    def test_max_length_backward_compat_sample(self):
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
1856
1857
1858
1859
        bart_tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
1860
1861
1862
1863
1864
1865
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        max_length = 20
        input_ids = input_ids.expand(2, -1)
        model_kwargs = bart_model._prepare_encoder_decoder_kwargs_for_generation(input_ids, {})
        input_ids = bart_model._prepare_decoder_input_ids_for_generation(
1866
            input_ids.shape[0],
1867
1868
1869
            decoder_start_token_id=bart_model.config.decoder_start_token_id,
            bos_token_id=bart_model.config.bos_token_id,
        )
1870
        with torch.no_grad():
1871
1872
1873
1874
1875
1876
1877
1878
            with self.assertWarns(UserWarning):
                bart_model.sample(
                    input_ids,
                    max_length=max_length,
                    pad_token_id=bart_model.config.pad_token_id,
                    eos_token_id=bart_model.config.eos_token_id,
                    **model_kwargs,
                )
1879
1880
1881

    def test_max_length_backward_compat_beam_search(self):
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
1882
1883
1884
1885
        bart_tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
1886
1887
1888
1889
1890
1891
1892
1893
1894
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        batch_size = 1
        max_length = 20
        num_beams = 2

        input_ids = input_ids.expand(2, -1)
        model_kwargs = bart_model._prepare_encoder_decoder_kwargs_for_generation(input_ids, {})
        input_ids = bart_model._prepare_decoder_input_ids_for_generation(
1895
            input_ids.shape[0],
1896
1897
1898
1899
1900
1901
1902
1903
1904
            decoder_start_token_id=bart_model.config.decoder_start_token_id,
            bos_token_id=bart_model.config.bos_token_id,
        )

        beam_scorer = BeamSearchScorer(
            batch_size=batch_size,
            num_beams=num_beams,
            device=torch_device,
        )
1905
1906
1907
1908
        with self.assertWarns(UserWarning):
            _ = bart_model.beam_search(
                input_ids, num_beams=num_beams, max_length=max_length, beam_scorer=beam_scorer, **model_kwargs
            )
1909
1910
1911

    def test_max_length_backward_compat_group_beam_search(self):
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
1912
1913
1914
1915
        bart_tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        batch_size = 1
        max_length = 20
        num_beams = 6
        num_beam_groups = 3
        num_return_sequences = num_beams * batch_size

        input_ids = input_ids.expand(6, -1)
        model_kwargs = bart_model._prepare_encoder_decoder_kwargs_for_generation(input_ids, {})
        input_ids = bart_model._prepare_decoder_input_ids_for_generation(
1927
            input_ids.shape[0],
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
            decoder_start_token_id=bart_model.config.decoder_start_token_id,
            bos_token_id=bart_model.config.bos_token_id,
        )

        diverse_beam_scorer = BeamSearchScorer(
            batch_size=batch_size,
            num_beams=num_beams,
            device=torch_device,
            num_beam_hyps_to_keep=num_return_sequences,
            num_beam_groups=num_beam_groups,
        )
1939
1940
1941
1942
        with self.assertWarns(UserWarning):
            bart_model.group_beam_search(
                input_ids, diverse_beam_scorer, num_beams=num_beams, max_length=max_length, **model_kwargs
            )
1943
1944
1945

    def test_max_length_warning_if_different(self):
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
1946
1947
1948
1949
        bart_tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        batch_size = 1

        max_length = 20
        num_beams = 6
        num_beam_groups = 3
        num_return_sequences = num_beams * batch_size
        stopping_criteria_max_length = 18
        stopping_criteria = StoppingCriteriaList([MaxLengthCriteria(max_length=stopping_criteria_max_length)])

        # Greedy
        input_ids = input_ids.expand(6, -1)
        model_kwargs = bart_model._prepare_encoder_decoder_kwargs_for_generation(input_ids, {})
        input_ids = bart_model._prepare_decoder_input_ids_for_generation(
1965
            input_ids.shape[0],
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
            decoder_start_token_id=bart_model.config.decoder_start_token_id,
            bos_token_id=bart_model.config.bos_token_id,
        )

        with self.assertWarns(UserWarning):
            bart_model.greedy_search(
                input_ids,
                max_length=max_length,
                pad_token_id=bart_model.config.pad_token_id,
                stopping_criteria=stopping_criteria,
                eos_token_id=bart_model.config.eos_token_id,
                **model_kwargs,
            )

        # Sample
        with self.assertWarns(UserWarning):
1982
1983
1984
1985
1986
1987
1988
1989
1990
            with torch.no_grad():
                bart_model.sample(
                    input_ids,
                    max_length=max_length,
                    stopping_criteria=stopping_criteria,
                    pad_token_id=bart_model.config.pad_token_id,
                    eos_token_id=bart_model.config.eos_token_id,
                    **model_kwargs,
                )
1991
1992
1993
1994
1995
1996
1997
1998

        # Beam
        beam_scorer = BeamSearchScorer(
            batch_size=batch_size,
            num_beams=num_beams,
            device=torch_device,
        )
        with self.assertWarns(UserWarning):
1999
2000
2001
2002
2003
2004
2005
2006
2007
            with torch.no_grad():
                bart_model.beam_search(
                    input_ids,
                    num_beams=num_beams,
                    stopping_criteria=stopping_criteria,
                    max_length=max_length,
                    beam_scorer=beam_scorer,
                    **model_kwargs,
                )
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025

        # Grouped beam search
        diverse_beam_scorer = BeamSearchScorer(
            batch_size=batch_size,
            num_beams=num_beams,
            device=torch_device,
            num_beam_hyps_to_keep=num_return_sequences,
            num_beam_groups=num_beam_groups,
        )
        with self.assertWarns(UserWarning):
            bart_model.group_beam_search(
                input_ids,
                diverse_beam_scorer,
                stopping_criteria=stopping_criteria,
                num_beams=num_beams,
                max_length=max_length,
                **model_kwargs,
            )
2026
2027
2028

    def test_beam_search_warning_if_max_length_is_passed(self):
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
2029
2030
2031
2032
        bart_tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
2033
2034
2035
2036
2037
2038
2039
2040

        batch_size = 1
        num_beams = 3

        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        input_ids = input_ids.expand(num_beams, -1)
        model_kwargs = bart_model._prepare_encoder_decoder_kwargs_for_generation(input_ids, {})

2041
2042
2043
        # pretend decoder_input_ids correspond to first encoder input id
        decoder_input_ids = input_ids[:, :1]

2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
        stopping_criteria_max_length = 18
        stopping_criteria = StoppingCriteriaList([MaxLengthCriteria(max_length=stopping_criteria_max_length)])

        with self.assertWarns(UserWarning):
            beam_scorer = BeamSearchScorer(
                batch_size=batch_size,
                num_beams=num_beams,
                device=torch_device,
                max_length=10,
            )

        generated_ids = bart_model.beam_search(
2056
            decoder_input_ids,
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
            num_beams=num_beams,
            stopping_criteria=stopping_criteria,
            beam_scorer=beam_scorer,
            **model_kwargs,
        )

        beam_scorer_no_max_len = BeamSearchScorer(
            batch_size=batch_size,
            num_beams=num_beams,
            device=torch_device,
        )

        generated_ids_no_max_len = bart_model.beam_search(
2070
            decoder_input_ids,
2071
2072
2073
2074
2075
2076
2077
2078
            num_beams=num_beams,
            stopping_criteria=stopping_criteria,
            beam_scorer=beam_scorer_no_max_len,
            **model_kwargs,
        )

        # BeamSearchScorer max_length should not influence "real" max_length
        self.assertEqual(generated_ids.tolist(), generated_ids_no_max_len.tolist())
2079

2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
    def test_custom_stopping_criteria_overload_error(self):
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
        bart_tokenizer = BartTokenizer.from_pretrained("sshleifer/bart-tiny-random")
        bart_model = BartForConditionalGeneration.from_pretrained("sshleifer/bart-tiny-random").to(torch_device)

        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        stopping_criteria = StoppingCriteriaList()
        stopping_criteria.append(MaxLengthCriteria(max_length=42))
        with self.assertRaises(ValueError):
            bart_model.generate(input_ids, stopping_criteria=stopping_criteria)
        with self.assertRaises(ValueError):
            bart_model.generate(input_ids, stopping_criteria=stopping_criteria, max_length=32)

    def test_custom_stopping_criteria(self):
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
        bart_tokenizer = BartTokenizer.from_pretrained("sshleifer/bart-tiny-random")
        bart_model = BartForConditionalGeneration.from_pretrained("sshleifer/bart-tiny-random").to(torch_device)
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        class DummyCriteria(StoppingCriteria):
            def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
                return input_ids.shape[-1] >= 20

        stopping_criteria = StoppingCriteriaList()
        stopping_criteria.append(DummyCriteria())

        self.assertEqual(
            list(bart_model.generate(input_ids, stopping_criteria=stopping_criteria, max_length=22).shape),
            [1, 20],
        )
        self.assertEqual(
            list(bart_model.generate(input_ids, stopping_criteria=stopping_criteria, max_length=18).shape),
            [1, 18],
        )

2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
    def test_stop_sequence_stopping_criteria(self):

        prompt = """Hello I believe in"""
        generator = pipeline("text-generation", model="hf-internal-testing/tiny-random-bart")
        output = generator(prompt)
        self.assertEqual(
            output,
            [
                {
                    "generated_text": (
                        "Hello I believe in in in number number number number number number number number number"
                    )
                }
            ],
        )

        output = generator(prompt, stop_sequence=" number")
        self.assertEqual(output, [{"generated_text": "Hello I believe in in in number"}])

2134
2135
2136
    def test_custom_logits_processor(self):
        bart_tokenizer = BartTokenizer.from_pretrained("sshleifer/bart-tiny-random")
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
2137
2138
2139
        bart_model = BartForConditionalGeneration.from_pretrained("sshleifer/bart-tiny-random", min_length=1).to(
            torch_device
        )
2140
2141
2142
2143
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        logits_processor = LogitsProcessorList()
        logits_processor.append(MinLengthLogitsProcessor(min_length=10, eos_token_id=0))
2144
        # it should not be allowed to both define `min_length` via config and `logits_processor` list
2145
2146
2147
2148
2149
2150
        with self.assertRaises(ValueError):
            bart_model.generate(input_ids, logits_processor=logits_processor)

        bart_model.config.min_length = None
        bart_model.generate(input_ids, logits_processor=logits_processor)

2151
    def test_max_new_tokens_encoder_decoder(self):
2152
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
2153
2154
2155
2156
        bart_tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
2157
2158
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

2159
        self.assertEqual(list(input_ids.shape), [1, 29])
2160
2161

        max_new_tokens = 3
2162
        bart_model.config.max_length = 20
2163
        bart_model.config.eos_token_id = None
2164
2165

        # Encoder decoder call
2166
2167
2168
2169
2170
2171
        outputs = bart_model.generate(input_ids, max_new_tokens=max_new_tokens)
        # 1 BOS + 3 new tokens
        self.assertEqual(list(outputs.shape), [1, 4])

        # Decoder only call
        outputs = bart_model.generate(decoder_input_ids=input_ids, max_new_tokens=max_new_tokens)
2172
2173
        # 29 + 3 new tokens
        self.assertEqual(list(outputs.shape), [1, 32])
2174

2175
2176
2177
2178
2179
2180
        # Encoder decoder call > 20
        outputs = bart_model.generate(max_new_tokens=max_new_tokens + 20)

        # 1 BOS + 20 + 3 new tokens
        self.assertEqual(list(outputs.shape), [1, 24])

2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
    def test_max_new_tokens_decoder_only_contrastive_search_t5(self):
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
        t5_tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
        t5_model = T5ForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-t5").to(torch_device)
        input_ids = t5_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        self.assertEqual(list(input_ids.shape), [1, 56])

        max_new_tokens = 3
        t5_model.config.max_length = 20
        t5_model.config.eos_token_id = None

        # Encoder decoder call
        outputs = t5_model.generate(input_ids, max_new_tokens=max_new_tokens, penalty_alpha=0.6, top_k=4)
        # 1 BOS + 3 new tokens
        self.assertEqual(list(outputs.shape), [1, 4])

        # Decoder only call
        outputs = t5_model.generate(
            decoder_input_ids=input_ids, max_new_tokens=max_new_tokens, penalty_alpha=0.6, top_k=4
        )
        # 56 + 3 new tokens
        self.assertEqual(list(outputs.shape), [1, 59])

        # Encoder decoder call > 20
        outputs = t5_model.generate(max_new_tokens=max_new_tokens + 20, penalty_alpha=0.6, top_k=4)

        # 1 BOS + 20 + 3 new tokens
        self.assertEqual(list(outputs.shape), [1, 24])

    def test_max_new_tokens_decoder_only_contrastive_search_bart(self):
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
        bart_tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        self.assertEqual(list(input_ids.shape), [1, 29])

        max_new_tokens = 3
        bart_model.config.max_length = 20
        bart_model.config.eos_token_id = None

        # Encoder decoder call
        outputs = bart_model.generate(input_ids, max_new_tokens=max_new_tokens, penalty_alpha=0.6, top_k=4)
        # 1 BOS + 3 new tokens
        self.assertEqual(list(outputs.shape), [1, 4])

        # Decoder only call
        outputs = bart_model.generate(
            decoder_input_ids=input_ids, max_new_tokens=max_new_tokens, penalty_alpha=0.6, top_k=4
        )
        # 29 + 3 new tokens
        self.assertEqual(list(outputs.shape), [1, 32])

        # Encoder decoder call > 20
        outputs = bart_model.generate(max_new_tokens=max_new_tokens + 20, penalty_alpha=0.6, top_k=4)

        # 1 BOS + 20 + 3 new tokens
        self.assertEqual(list(outputs.shape), [1, 24])

    def test_max_new_tokens_decoder_only_contrastive_search_gptj(self):
        article = """Justin Timberlake."""
        gptj_tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gptj")
        gptj_model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gptj").to(torch_device)
        input_ids = gptj_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        self.assertEqual(list(input_ids.shape), [1, 9])

        max_new_tokens = 3
        gptj_model.config.max_length = 20

        # call < 20
        outputs = gptj_model.generate(input_ids, max_new_tokens=max_new_tokens, penalty_alpha=0.6, top_k=4)

        # 9 input_ids + 3 new tokens
        self.assertEqual(list(outputs.shape), [1, 12])

        # call > 20
        outputs = gptj_model.generate(max_new_tokens=max_new_tokens + 20, penalty_alpha=0.6, top_k=4)

        # 1 BOS token + 23 new tokens
        self.assertEqual(list(outputs.shape), [1, 24])

    def test_max_new_tokens_decoder_only_contrastive_search_gpt2(self):
        article = """Justin Timberlake."""
        gpt2_tokenizer = GPT2Tokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        gpt2_model = GPT2LMHeadModel.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        input_ids = gpt2_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        self.assertEqual(list(input_ids.shape), [1, 9])

        max_new_tokens = 3
        gpt2_model.config.max_length = 20

        # call < 20
        outputs = gpt2_model.generate(input_ids, max_new_tokens=max_new_tokens, penalty_alpha=0.6, top_k=4)

        # 9 input_ids + 3 new tokens
        self.assertEqual(list(outputs.shape), [1, 12])

        # call > 20
        outputs = gpt2_model.generate(max_new_tokens=max_new_tokens + 20, penalty_alpha=0.6, top_k=4)

        # 1 BOS token + 23 new tokens
        self.assertEqual(list(outputs.shape), [1, 24])

2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
    def test_max_new_tokens_decoder_only(self):
        article = """Justin Timberlake."""
        gpt2_tokenizer = GPT2Tokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        gpt2_model = GPT2LMHeadModel.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        input_ids = gpt2_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        self.assertEqual(list(input_ids.shape), [1, 9])

        max_new_tokens = 3
        gpt2_model.config.max_length = 20

        # call < 20
        outputs = gpt2_model.generate(input_ids, max_new_tokens=max_new_tokens)

        # 9 input_ids + 3 new tokens
        self.assertEqual(list(outputs.shape), [1, 12])

        # call > 20
        outputs = gpt2_model.generate(max_new_tokens=max_new_tokens + 20)

        # 1 BOS token + 23 new tokens
        self.assertEqual(list(outputs.shape), [1, 24])

2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
    def test_encoder_decoder_generate_with_inputs_embeds(self):
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
        tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart", max_length=5).to(
            torch_device
        )
        model.config.eos_token_id = None
        input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        inputs_embeds = model.get_input_embeddings()(input_ids)

        output_sequences = model.generate(inputs_embeds=inputs_embeds)

        # make sure model generated correctly until `max_length`
        self.assertEqual(output_sequences.shape, (1, 5))

2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
    def test_encoder_decoder_generate_attention_mask(self):
        articles = ["Timberlake", "Jessica Biel, welcome to parenthood among other things"]
        tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        # need extrem generation values here to force this test
        # to fail when `attention_mask` is not correctly treated in generate
        model = BartForConditionalGeneration.from_pretrained(
            "hf-internal-testing/tiny-random-bart", max_length=50, num_beams=5, num_return_sequences=5
        ).to(torch_device)

        model.config.eos_token_id = None
        input_ids = tokenizer(articles[0], return_tensors="pt").input_ids.to(torch_device)
        input_ids_batched = tokenizer(articles, padding=True, return_tensors="pt").input_ids.to(torch_device)

        output_sequences_batched = model.generate(
            input_ids=input_ids_batched, return_dict_in_generate=True, output_scores=True
        )
        output_sequences = model.generate(input_ids=input_ids, return_dict_in_generate=True, output_scores=True)

        batched_out = output_sequences_batched.sequences_scores
        out = output_sequences.sequences_scores

        diff = (batched_out[:5].sum() - out.sum()).abs()

        self.assertTrue(diff < 1e-4)

2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
    def test_decoder_generate_with_inputs_embeds(self):
        article = """I need input_ids to generate"""
        tokenizer = GPT2Tokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        model = GPT2LMHeadModel.from_pretrained("hf-internal-testing/tiny-random-gpt2", max_length=5).to(torch_device)
        input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        inputs_embeds = model.get_input_embeddings()(input_ids)

        # cannot generate from `inputs_embeds` for decoder only
        with self.assertRaises(ValueError):
            model.generate(inputs_embeds=inputs_embeds)
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373

    def test_generate_input_ids_as_kwarg(self):
        article = """I need input_ids to generate"""
        tokenizer = GPT2Tokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        model = GPT2LMHeadModel.from_pretrained("hf-internal-testing/tiny-random-gpt2", max_length=15).to(torch_device)
        input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        output_sequences_kwargs = model.generate(input_ids=input_ids).cpu()
        output_sequences = model.generate(input_ids).cpu()

        self.assertListEqual(output_sequences.tolist(), output_sequences_kwargs.tolist())
        self.assertEqual(output_sequences.shape, (1, 15))

2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
    def test_generate_non_nlp_input_ids_as_kwarg(self):
        model = ImageGPTForCausalImageModeling.from_pretrained(
            "hf-internal-testing/tiny-random-imagegpt", max_length=10
        ).to(torch_device)
        input_ids = ids_tensor((3, 5), vocab_size=10)

        output_sequences_kwargs = model.generate(input_ids=input_ids).cpu()
        output_sequences = model.generate(input_ids).cpu()

        self.assertListEqual(output_sequences.tolist(), output_sequences_kwargs.tolist())
        self.assertEqual(output_sequences.shape, (3, 10))

2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
    def test_generate_input_ids_as_encoder_kwarg(self):
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
        tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart", max_length=5).to(
            torch_device
        )
        model.config.eos_token_id = None
        input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        output_sequences_kwargs = model.generate(input_ids=input_ids).cpu()
        output_sequences = model.generate(input_ids).cpu()

        self.assertListEqual(output_sequences.tolist(), output_sequences_kwargs.tolist())
        self.assertEqual(output_sequences.shape, (1, 5))

    def test_generate_inputs_and_encoder_kwargs(self):
        article = """I need input_ids to generate"""
        tokenizer = GPT2Tokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        model = GPT2LMHeadModel.from_pretrained("hf-internal-testing/tiny-random-gpt2", max_length=10).to(torch_device)
        input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        with self.assertRaises(ValueError):
            model.generate(input_ids, input_ids=input_ids)

    def test_generate_too_many_encoder_kwargs(self):
        article = """I need input_ids to generate"""
        tokenizer = GPT2Tokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        model = GPT2LMHeadModel.from_pretrained("hf-internal-testing/tiny-random-gpt2", max_length=10).to(torch_device)
        input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        with self.assertRaises(ValueError):
2414
            model.generate(input_ids=input_ids, inputs_embeds=input_ids)
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444

    def test_generate_input_values_as_encoder_kwarg(self):
        input_values = floats_tensor((2, 250))
        model = SpeechEncoderDecoderModel.from_pretrained("hf-internal-testing/tiny-random-speech-encoder-decoder")
        model = model.to(torch_device)
        output_sequences_kwargs = model.generate(input_values=input_values, max_length=5).cpu()
        output_sequences = model.generate(input_values, max_length=5).cpu()

        self.assertListEqual(output_sequences.tolist(), output_sequences_kwargs.tolist())
        self.assertEqual(output_sequences.shape, (2, 5))

    def test_generate_input_features_as_encoder_kwarg(self):
        input_features = floats_tensor((3, 20, 24))
        model = Speech2TextForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-speech_to_text")
        model = model.to(torch_device)
        output_sequences_kwargs = model.generate(input_features=input_features, max_length=5).cpu()
        output_sequences = model.generate(input_features, max_length=5).cpu()

        self.assertListEqual(output_sequences.tolist(), output_sequences_kwargs.tolist())
        self.assertEqual(output_sequences.shape, (3, 5))

    def test_generate_pixel_values_as_encoder_kwarg(self):
        pixel_values = floats_tensor((2, 3, 30, 30))
        model = VisionEncoderDecoderModel.from_pretrained("hf-internal-testing/tiny-random-vision-encoder-decoder")
        model = model.to(torch_device)
        output_sequences_kwargs = model.generate(pixel_values=pixel_values, max_length=5).cpu()
        output_sequences = model.generate(pixel_values, max_length=5).cpu()

        self.assertListEqual(output_sequences.tolist(), output_sequences_kwargs.tolist())
        self.assertEqual(output_sequences.shape, (2, 5))
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460

    def test_generate_encoder_outputs_attention_mask(self):
        input_values = floats_tensor((2, 250)).to(torch_device)
        attention_mask = torch.ones_like(input_values)
        model = SpeechEncoderDecoderModel.from_pretrained("hf-internal-testing/tiny-random-speech-encoder-decoder")
        model = model.to(torch_device)

        encoder = model.get_encoder()

        encoder_outputs = encoder(input_values)

        output_sequences_no_mask = model.generate(encoder_outputs=encoder_outputs).cpu()
        output_sequences_with_mask = model.generate(encoder_outputs=encoder_outputs, attention_mask=attention_mask)
        output_sequences_with_mask = output_sequences_with_mask.cpu()

        self.assertListEqual(output_sequences_no_mask.tolist(), output_sequences_with_mask.tolist())
2461

2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
    def test_transition_scores_greedy_search(self):
        articles = ["Justin Timberlake", "Michael Phelps"]
        tokenizer = GPT2Tokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        tokenizer.pad_token = tokenizer.eos_token

        model = GPT2LMHeadModel.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)

        input_ids = tokenizer(articles, return_tensors="pt", padding=True).input_ids.to(torch_device)
        outputs = model.generate(
            input_ids=input_ids,
            max_new_tokens=5,
            pad_token_id=tokenizer.eos_token_id,
            eos_token_id=None,
            return_dict_in_generate=True,
            output_scores=True,
        )

        transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores)
        expected_scores = np.array(
            [
                [0.3596273, 0.39646253, 0.46157718, 0.4594633, 0.44866616],
                [0.34934354, 0.4935004, 0.6373219, 0.5173545, 0.57517034],
            ]
        )
        self.assertTrue(np.allclose(transition_scores.cpu().numpy(), expected_scores))

    def test_transition_scores_greedy_search_normalized(self):
        articles = ["Justin Timberlake", "Michael Phelps"]
        tokenizer = GPT2Tokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        tokenizer.pad_token = tokenizer.eos_token

        model = GPT2LMHeadModel.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)

        input_ids = tokenizer(articles, return_tensors="pt", padding=True).input_ids.to(torch_device)
        outputs = model.generate(
            input_ids=input_ids,
            max_new_tokens=5,
            pad_token_id=tokenizer.eos_token_id,
            eos_token_id=None,
            return_dict_in_generate=True,
            output_scores=True,
        )

        transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, normalize_logits=True)
        expected_scores = np.array(
            [
                [-6.5532393, -6.5158753, -6.451863, -6.4527144, -6.459402],
                [-6.5685124, -6.4277077, -6.282607, -6.399295, -6.340927],
            ]
        )
        self.assertTrue(np.allclose(transition_scores.cpu().numpy(), expected_scores))

2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
    def test_transition_scores_beam_search_encoder_decoder(self):
        articles = [
            "Justin Timberlake and Jessica Biel, welcome to parenthood.",
            "Michael Phelps is arguably the most decorated Olympian of all time.",
        ]
        tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        model = BartForConditionalGeneration.from_pretrained(
            "hf-internal-testing/tiny-random-bart",
            max_length=10,
            num_beams=4,
            num_return_sequences=2,
            eos_token_id=None,
            return_dict_in_generate=True,
            output_scores=True,
            length_penalty=0.0,
        )
        model = model.to(torch_device)

        input_ids = tokenizer(articles, return_tensors="pt", padding=True).input_ids.to(torch_device)
        outputs = model.generate(input_ids=input_ids)

2535
        transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, outputs.beam_indices)
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
        transition_scores_sum = transition_scores.sum(-1)

        self.assertTrue(torch.allclose(transition_scores_sum, outputs.sequences_scores, atol=1e-3))

    def test_transition_scores_beam_search_encoder_decoder_with_eos(self):
        articles = [
            "Justin Timberlake and Jessica Biel, welcome to parenthood.",
            "Michael Phelps is arguably the most decorated Olympian of all time.",
        ]
        tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        model = BartForConditionalGeneration.from_pretrained(
            "hf-internal-testing/tiny-random-bart",
            max_length=10,
            num_beams=4,
            num_return_sequences=2,
            return_dict_in_generate=True,
            output_scores=True,
            length_penalty=0.0,
        )
        model = model.to(torch_device)

        input_ids = tokenizer(articles, return_tensors="pt", padding=True).input_ids.to(torch_device)
        outputs = model.generate(input_ids=input_ids)

2560
        transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, outputs.beam_indices)
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
        transition_scores_sum = transition_scores.sum(-1)

        self.assertTrue(torch.allclose(transition_scores_sum, outputs.sequences_scores, atol=1e-3))

    def test_transition_scores_beam_search_decoder_only(self):
        articles = [
            "Justin Timberlake",
            "Michael Phelps",
        ]
        tokenizer = GPT2Tokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        tokenizer.pad_token = tokenizer.eos_token

        model = GPT2LMHeadModel.from_pretrained(
            "hf-internal-testing/tiny-random-gpt2",
            max_length=10,
            num_beams=4,
            num_return_sequences=2,
            pad_token_id=tokenizer.eos_token_id,
            eos_token_id=None,
            return_dict_in_generate=True,
            output_scores=True,
            length_penalty=0.0,
        )
        model = model.to(torch_device)

        input_ids = tokenizer(articles, return_tensors="pt", padding=True).input_ids.to(torch_device)
        outputs = model.generate(input_ids=input_ids)

2589
        transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, outputs.beam_indices)
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
        transition_scores_sum = transition_scores.sum(-1)

        self.assertTrue(torch.allclose(transition_scores_sum, outputs.sequences_scores, atol=1e-3))

    def test_transition_scores_beam_sample_encoder_decoder(self):
        articles = [
            "Justin Timberlake and Jessica Biel, welcome to parenthood.",
            "Michael Phelps is arguably the most decorated Olympian of all time.",
        ]
        tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        model = BartForConditionalGeneration.from_pretrained(
            "hf-internal-testing/tiny-random-bart",
            do_sample=True,
            max_length=10,
            num_beams=4,
            num_return_sequences=2,
            eos_token_id=None,
            return_dict_in_generate=True,
            output_scores=True,
            length_penalty=0.0,
        )
        model = model.to(torch_device)

        input_ids = tokenizer(articles, return_tensors="pt", padding=True).input_ids.to(torch_device)
        outputs = model.generate(input_ids=input_ids)

2616
        transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, outputs.beam_indices)
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
        transition_scores_sum = transition_scores.sum(-1)

        self.assertTrue(torch.allclose(transition_scores_sum, outputs.sequences_scores, atol=1e-3))

    def test_transition_scores_group_beam_search_encoder_decoder(self):
        articles = [
            "Justin Timberlake and Jessica Biel, welcome to parenthood.",
            "Michael Phelps is arguably the most decorated Olympian of all time.",
        ]
        tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        model = BartForConditionalGeneration.from_pretrained(
            "hf-internal-testing/tiny-random-bart",
            max_length=10,
            num_beams=2,
            num_beam_groups=2,
            num_return_sequences=2,
            eos_token_id=None,
            return_dict_in_generate=True,
            output_scores=True,
            length_penalty=0.0,
        )
        model = model.to(torch_device)

        input_ids = tokenizer(articles, return_tensors="pt", padding=True).input_ids.to(torch_device)
        outputs = model.generate(input_ids=input_ids)

2643
        transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, outputs.beam_indices)
2644
2645
2646
        transition_scores_sum = transition_scores.sum(-1)

        self.assertTrue(torch.allclose(transition_scores_sum, outputs.sequences_scores, atol=1e-3))
2647

2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
    @slow
    def test_transition_scores_early_stopping(self):
        # This is an aggressive test that makes sure that `beam_search's`
        # transition scores are computed correctly for varying `num_return_sequences`,
        # `num_beams` and `batch_size > 1`
        # 2 x input_ids for "question: How are you? \n context: I had a long day, "
        input_ids = torch.tensor(2 * [[822, 10, 571, 33, 25, 58, 2625, 10, 27, 141, 3, 9, 307, 239, 6, 1]]).to(
            torch_device
        )

        model = AutoModelForSeq2SeqLM.from_pretrained("t5-small").to(torch_device)

        result = model.generate(
            input_ids,
            max_length=10,
            return_dict_in_generate=True,
            output_scores=True,
            forced_eos_token_id=model.config.eos_token_id,
            num_beams=4,
            do_sample=False,
            num_return_sequences=3,
            length_penalty=0.0,
        )

2672
        transition_scores = model.compute_transition_scores(
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
            sequences=result.sequences, scores=result.scores, beam_indices=result.beam_indices
        )

        sum_transition_scores = torch.sum(transition_scores, dim=1)

        self.assertListEqual(sum_transition_scores.cpu().tolist(), result.sequences_scores.cpu().tolist())

    def test_log_scores_sample_decoder_only(self):
        articles = ["I need input_ids to generate", "Short and"]
        tokenizer = GPT2Tokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        tokenizer.padding_side = "left"
        tokenizer.pad_token = tokenizer.eos_token

        model = GPT2LMHeadModel.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)

        inputs = tokenizer(articles, return_tensors="pt", padding=True).to(torch_device)

        result = model.generate(
            **inputs,
            max_length=15,
            return_dict_in_generate=True,
            do_sample=False,
            output_scores=True,
        )

        # decoder-only starts generating from `input_ids`
        begin_generation = inputs.input_ids.shape[-1]

        gen_sequences = result.sequences[:, begin_generation:]
        probs = torch.stack(result.scores, dim=1).softmax(-1)

        gen_probs = torch.gather(probs, 2, gen_sequences[:, :, None]).squeeze(-1)
        expected_probs = torch.tensor([[0.0014, 0.0015], [0.0014, 0.0014]])

        self.assertTrue(torch.allclose(gen_probs.cpu(), expected_probs, atol=1e-3))

    def test_log_scores_sample_encoder_decoder(self):
        articles = ["I need input_ids to generate", "Short and"]
        tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(torch_device)

        inputs = tokenizer(articles, return_tensors="pt", padding=True).to(torch_device)

        result = model.generate(
            **inputs,
            max_length=3,
            return_dict_in_generate=True,
            do_sample=False,
            num_beams=1,
            output_scores=True,
        )

        # encoder-decoder has one decoder_start_token_id by default
        begin_generation = 1

        gen_sequences = result.sequences[:, begin_generation:]
        probs = torch.stack(result.scores, dim=1).softmax(-1)

        gen_probs = torch.gather(probs, 2, gen_sequences[:, :, None]).squeeze(-1)
        expected_probs = torch.tensor([[0.0013, 1.0000], [0.0013, 1.0000]])

        self.assertTrue(torch.allclose(gen_probs.cpu(), expected_probs, atol=1e-3))

2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
    @slow
    def test_beam_search_example_integration(self):
        # exactly the example provided in the docstrings of beam search, which previously
        # failed after directly copying from it. Refer to PR #15555
        tokenizer = AutoTokenizer.from_pretrained("t5-base")
        model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")

        encoder_input_str = "translate English to German: How old are you?"
        encoder_input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids

        # lets run beam search using 3 beams
        num_beams = 3
        # define decoder start token ids
        input_ids = torch.ones((num_beams, 1), device=model.device, dtype=torch.long)
        input_ids = input_ids * model.config.decoder_start_token_id

        # add encoder_outputs to model keyword arguments
        model_kwargs = {
            "encoder_outputs": model.get_encoder()(
                encoder_input_ids.repeat_interleave(num_beams, dim=0), return_dict=True
            )
        }

        # instantiate beam scorer
        beam_scorer = BeamSearchScorer(
            batch_size=1,
            num_beams=num_beams,
            device=model.device,
        )

        # instantiate logits processors
        logits_processor = LogitsProcessorList(
            [
                MinLengthLogitsProcessor(5, eos_token_id=model.config.eos_token_id),
            ]
        )

        outputs = model.beam_search(input_ids, beam_scorer, logits_processor=logits_processor, **model_kwargs)
        outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(outputs, ["Wie alt bist du?"])

2778
2779
    @slow
    def test_constrained_beam_search(self):
2780
2781
        model = GPT2LMHeadModel.from_pretrained("gpt2").to(torch_device)
        tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
2782

2783
2784
        force_tokens = tokenizer("scared", add_prefix_space=True, add_special_tokens=False).input_ids
        force_tokens_2 = tokenizer("big weapons", add_prefix_space=True, add_special_tokens=False).input_ids
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809

        constraints = [
            PhrasalConstraint(force_tokens),
            PhrasalConstraint(force_tokens_2),
        ]

        starting_text = ["The soldiers were not prepared and"]

        input_ids = tokenizer(starting_text, return_tensors="pt").input_ids.to(torch_device)

        outputs = model.generate(
            input_ids,
            constraints=constraints,
            num_beams=10,
            num_return_sequences=1,
            no_repeat_ngram_size=1,
            max_length=30,
            remove_invalid_values=True,
        )

        generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
2810
2811
                "The soldiers were not prepared and didn't know what to do. They had no idea how they would react if"
                " the enemy attacked them, big weapons scared"
2812
2813
2814
            ],
        )

2815
2816
    @slow
    def test_constrained_beam_search_mixed(self):
2817
2818
        model = GPT2LMHeadModel.from_pretrained("gpt2").to(torch_device)
        tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848

        force_phrase = tokenizer("scared", add_prefix_space=True, add_special_tokens=False).input_ids
        flexible_phrases = tokenizer(
            ["scream", "screams", "screaming", "screamed"], add_prefix_space=True, add_special_tokens=False
        ).input_ids

        constraints = [
            PhrasalConstraint(force_phrase),
            DisjunctiveConstraint(flexible_phrases),
        ]

        starting_text = ["The soldiers", "The child"]

        input_ids = tokenizer(starting_text, return_tensors="pt").input_ids.to(torch_device)

        outputs = model.generate(
            input_ids,
            constraints=constraints,
            num_beams=10,
            num_return_sequences=1,
            no_repeat_ngram_size=1,
            # max_length=20,
            remove_invalid_values=True,
        )

        generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
2849
2850
2851
                "The soldiers, who had been stationed at the base for more than a year before being evacuated"
                " screaming scared",
                "The child was taken to a local hospital where he died.\n 'I don't think screaming scared",
2852
2853
2854
2855
2856
            ],
        )

    @slow
    def test_constrained_beam_search_mixed_mixin(self):
2857
2858
        model = GPT2LMHeadModel.from_pretrained("gpt2").to(torch_device)
        tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885

        force_word = "scared"
        force_flexible = ["scream", "screams", "screaming", "screamed"]

        force_words_ids = [
            tokenizer([force_word], add_prefix_space=True, add_special_tokens=False).input_ids,
            tokenizer(force_flexible, add_prefix_space=True, add_special_tokens=False).input_ids,
        ]

        starting_text = ["The soldiers", "The child"]

        input_ids = tokenizer(starting_text, return_tensors="pt").input_ids.to(torch_device)

        outputs = model.generate(
            input_ids,
            force_words_ids=force_words_ids,
            num_beams=10,
            num_return_sequences=1,
            no_repeat_ngram_size=1,
            remove_invalid_values=True,
        )

        generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
2886
2887
2888
                "The soldiers, who had been stationed at the base for more than a year before being evacuated"
                " screaming scared",
                "The child was taken to a local hospital where he died.\n 'I don't think screaming scared",
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
            ],
        )

    @slow
    def test_constrained_beam_search_example_translation_mixin(self):
        tokenizer = AutoTokenizer.from_pretrained("t5-base")
        model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")

        encoder_input_str = "translate English to German: How old are you?"
        force_words = ["sind"]

        input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids
        force_words_ids = tokenizer(force_words, add_special_tokens=False).input_ids

        outputs = model.generate(
            input_ids,
            force_words_ids=force_words_ids,
            num_beams=10,
            num_return_sequences=1,
            no_repeat_ngram_size=1,
            remove_invalid_values=True,
        )

        outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)

2914
        self.assertListEqual(outputs, ["Wie alt sind Sie?"])
2915

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
    @slow
    def test_constrained_beam_search_example_integration(self):
        tokenizer = AutoTokenizer.from_pretrained("t5-base")
        model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")

        encoder_input_str = "translate English to German: How old are you?"
        encoder_input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids

        # lets run beam search using 5 beams
        num_beams = 5
        # define decoder start token ids
        input_ids = torch.ones((num_beams, 1), device=model.device, dtype=torch.long)
        input_ids = input_ids * model.config.decoder_start_token_id

        # add encoder_outputs to model keyword arguments
        model_kwargs = {
            "encoder_outputs": model.get_encoder()(
                encoder_input_ids.repeat_interleave(num_beams, dim=0), return_dict=True
            )
        }

        constraint_str = "sind"
        constraint_token_ids = tokenizer.encode(constraint_str)[:-1]  # remove eos token
        constraints = [PhrasalConstraint(token_ids=constraint_token_ids)]

        # instantiate beam scorer
        beam_scorer = ConstrainedBeamSearchScorer(
            batch_size=1, num_beams=num_beams, device=model.device, constraints=constraints
        )

        # instantiate logits processors
        logits_processor = LogitsProcessorList(
            [
                MinLengthLogitsProcessor(5, eos_token_id=model.config.eos_token_id),
            ]
        )

        outputs = model.constrained_beam_search(
            input_ids, beam_scorer, constraints=constraints, logits_processor=logits_processor, **model_kwargs
        )
        outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)

2958
        self.assertListEqual(outputs, ["Wie alt sind Sie?"])
2959
2960

    def test_constrained_beam_search_mixin_type_checks(self):
2961
2962
        tokenizer = AutoTokenizer.from_pretrained("patrickvonplaten/t5-tiny-random")
        model = AutoModelForSeq2SeqLM.from_pretrained("patrickvonplaten/t5-tiny-random")
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998

        encoder_input_str = "translate English to German: How old are you?"
        input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids

        with self.assertRaises(ValueError):
            force_words = ["sind"]
            force_words_ids = tokenizer(force_words, return_tensors="pt").input_ids
            model.generate(
                input_ids,
                force_words_ids=force_words_ids,
                num_beams=10,
                num_return_sequences=1,
                no_repeat_ngram_size=1,
                remove_invalid_values=True,
            )

        with self.assertRaises(ValueError):
            force_words = ["sind"]
            force_words_ids = [tokenizer(force_words, return_tensors="pt").input_ids]
            model.generate(
                input_ids,
                force_words_ids=force_words_ids,
                num_beams=10,
                num_return_sequences=1,
                no_repeat_ngram_size=1,
                remove_invalid_values=True,
            )

        with self.assertRaises(ValueError):
            model.generate(input_ids, force_words_ids=[])

        with self.assertRaises(ValueError):
            model.generate(input_ids, force_words_ids=[[-1]])

        with self.assertRaises(ValueError):
            model.generate(input_ids, force_words_ids=[[[-1]]])
2999

3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
    def test_contrastive_search_batched(self):
        # Tests that contrastive search works with batched inputs (i.e. has the same output as for non-batched inputs)
        articles = ["Foo", "Bar Baz"]
        tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(torch_device)

        model.config.eos_token_id = None
        input_ids_batched = tokenizer(articles, padding=True, return_tensors="pt").input_ids.to(torch_device)
        input_ids = tokenizer(articles[1], return_tensors="pt").input_ids.to(torch_device)

        output_sequences_batched = model.generate(
            input_ids=input_ids_batched, penalty_alpha=0.6, top_k=4, return_dict_in_generate=True, output_scores=True
        )
        output_sequences = model.generate(
            input_ids=input_ids, penalty_alpha=0.6, top_k=4, return_dict_in_generate=True, output_scores=True
        )

        batched_out = tokenizer.decode(output_sequences_batched.sequences[1], skip_special_tokens=True)
        out = tokenizer.decode(output_sequences.sequences[0], skip_special_tokens=True)
        self.assertEqual(batched_out, out)

        # output_sequences_batched.scores[0][1] -> 1st set of logits, 2nd sequence
        max_score_diff = (output_sequences_batched.scores[0][1] - output_sequences.scores[0][0]).abs().max()
        self.assertTrue(max_score_diff < 1e-5)

3025
    def test_validate_generation_inputs(self):
3026
3027
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-roberta")
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-roberta")
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039

        encoder_input_str = "Hello world"
        input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids

        # typos are quickly detected (the correct argument is `do_sample`)
        with self.assertRaisesRegex(ValueError, "do_samples"):
            model.generate(input_ids, do_samples=True)

        # arbitrary arguments that will not be used anywhere are also not accepted
        with self.assertRaisesRegex(ValueError, "foo"):
            fake_model_kwargs = {"foo": "bar"}
            model.generate(input_ids, **fake_model_kwargs)
3040
3041
3042
3043

        # However, valid model_kwargs are accepted
        valid_model_kwargs = {"attention_mask": torch.zeros_like(input_ids)}
        model.generate(input_ids, **valid_model_kwargs)
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053

    def test_eos_token_id_int_and_list_greedy_search(self):
        generation_kwargs = {
            "do_sample": False,
            "num_beams": 1,
        }
        expectation = 13

        tokenizer = GPT2Tokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        text = """Hello, my dog is cute and"""
3054
        tokens = tokenizer(text, return_tensors="pt").to(torch_device)
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078

        model = GPT2LMHeadModel.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)

        torch.manual_seed(0)
        eos_token_id = 873
        generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs)
        self.assertTrue(expectation == len(generated_tokens[0]))

        torch.manual_seed(0)
        eos_token_id = [873]
        generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs)
        self.assertTrue(expectation == len(generated_tokens[0]))

    def test_eos_token_id_int_and_list_contrastive_search(self):
        generation_kwargs = {
            "do_sample": False,
            "num_beams": 1,
            "penalty_alpha": 0.6,
            "top_k": 4,
        }
        expectation = 17

        tokenizer = GPT2Tokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        text = """Hello, my dog is cute and"""
3079
        tokens = tokenizer(text, return_tensors="pt").to(torch_device)
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104

        model = GPT2LMHeadModel.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)

        torch.manual_seed(0)
        eos_token_id = 225
        generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs)
        self.assertTrue(expectation == len(generated_tokens[0]))

        torch.manual_seed(0)
        eos_token_id = [225]
        generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs)
        self.assertTrue(expectation == len(generated_tokens[0]))

    def test_eos_token_id_int_and_list_top_k_top_sampling(self):
        generation_kwargs = {
            "do_sample": True,
            "num_beams": 1,
            "top_p": 0.7,
            "top_k": 10,
            "temperature": 0.7,
        }
        expectation = 15

        tokenizer = GPT2Tokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        text = """Hello, my dog is cute and"""
3105
        tokens = tokenizer(text, return_tensors="pt").to(torch_device)
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127

        model = GPT2LMHeadModel.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)

        torch.manual_seed(0)
        eos_token_id = 846
        generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs)
        self.assertTrue(expectation == len(generated_tokens[0]))

        torch.manual_seed(0)
        eos_token_id = [846]
        generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs)
        self.assertTrue(expectation == len(generated_tokens[0]))

    def test_eos_token_id_int_and_list_beam_search(self):
        generation_kwargs = {
            "do_sample": False,
            "num_beams": 3,
        }
        expectation = 13

        tokenizer = GPT2Tokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        text = """Hello, my dog is cute and"""
3128
        tokens = tokenizer(text, return_tensors="pt").to(torch_device)
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140

        model = GPT2LMHeadModel.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)

        torch.manual_seed(0)
        eos_token_id = 873
        generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs)
        self.assertTrue(expectation == len(generated_tokens[0]))

        torch.manual_seed(0)
        eos_token_id = [873]
        generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs)
        self.assertTrue(expectation == len(generated_tokens[0]))