"tests/bert/test_modeling_tf_bert.py" did not exist on "bc1715c1e0872187a8b76d2f258d43815dcf6067"
test_modeling_esmfold.py 9.69 KB
Newer Older
Matt's avatar
Matt committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch ESM model. """


import unittest

from transformers import EsmConfig, is_torch_available
from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device

from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
25
from ...test_pipeline_mixin import PipelineTesterMixin
Matt's avatar
Matt committed
26
27
28
29
30
31
32
33
34
35
36
37


if is_torch_available():
    import torch

    from transformers.models.esm.modeling_esmfold import EsmForProteinFolding


class EsmFoldModelTester:
    def __init__(
        self,
        parent,
Yih-Dar's avatar
Yih-Dar committed
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
        batch_size=13,
        seq_length=7,
        is_training=False,
        use_input_mask=True,
        use_token_type_ids=False,
        use_labels=False,
        vocab_size=19,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
        scope=None,
Matt's avatar
Matt committed
59
60
    ):
        self.parent = parent
Yih-Dar's avatar
Yih-Dar committed
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_token_type_ids = use_token_type_ids
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.num_choices = num_choices
        self.scope = scope
Matt's avatar
Matt committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = random_attention_mask([self.batch_size, self.seq_length])

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = self.get_config()

        return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels

    def get_config(self):
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
        esmfold_config = {
            "trunk": {
                "num_blocks": 2,
                "sequence_state_dim": 64,
                "pairwise_state_dim": 16,
                "sequence_head_width": 4,
                "pairwise_head_width": 4,
                "position_bins": 4,
                "chunk_size": 16,
                "structure_module": {
                    "ipa_dim": 16,
                    "num_angles": 7,
                    "num_blocks": 2,
                    "num_heads_ipa": 4,
                    "pairwise_dim": 16,
                    "resnet_dim": 16,
                    "sequence_dim": 48,
                },
            },
            "fp16_esm": False,
            "lddt_head_hid_dim": 16,
        }
Matt's avatar
Matt committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138
        config = EsmConfig(
            vocab_size=33,
            hidden_size=self.hidden_size,
            pad_token_id=1,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
            is_folding_model=True,
139
            esmfold_config=esmfold_config,
Matt's avatar
Matt committed
140
141
142
143
144
145
146
147
148
149
150
        )
        return config

    def create_and_check_model(self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels):
        model = EsmForProteinFolding(config=config).float()
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask)
        result = model(input_ids)
        result = model(input_ids)

151
152
        self.parent.assertEqual(result.positions.shape, (2, self.batch_size, self.seq_length, 14, 3))
        self.parent.assertEqual(result.angles.shape, (2, self.batch_size, self.seq_length, 7, 2))
Matt's avatar
Matt committed
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
        return config, inputs_dict


@require_torch
169
class EsmFoldModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
Matt's avatar
Matt committed
170
171
172
173
    test_mismatched_shapes = False

    all_model_classes = (EsmForProteinFolding,) if is_torch_available() else ()
    all_generative_model_classes = ()
174
    pipeline_model_mapping = {} if is_torch_available() else {}
Matt's avatar
Matt committed
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
    test_sequence_classification_problem_types = False

    def setUp(self):
        self.model_tester = EsmFoldModelTester(self)
        self.config_tester = ConfigTester(self, config_class=EsmConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    @unittest.skip("Does not support attention outputs")
    def test_attention_outputs(self):
        pass

    @unittest.skip
    def test_correct_missing_keys(self):
        pass

    @unittest.skip("Esm does not support embedding resizing")
    def test_resize_embeddings_untied(self):
        pass

    @unittest.skip("Esm does not support embedding resizing")
    def test_resize_tokens_embeddings(self):
        pass

    @unittest.skip("ESMFold does not support passing input embeds!")
    def test_inputs_embeds(self):
        pass

    @unittest.skip("ESMFold does not support head pruning.")
    def test_head_pruning(self):
        pass

    @unittest.skip("ESMFold does not support head pruning.")
    def test_head_pruning_integration(self):
        pass

    @unittest.skip("ESMFold does not support head pruning.")
    def test_head_pruning_save_load_from_config_init(self):
        pass

    @unittest.skip("ESMFold does not support head pruning.")
    def test_head_pruning_save_load_from_pretrained(self):
        pass

    @unittest.skip("ESMFold does not support head pruning.")
    def test_headmasking(self):
        pass

    @unittest.skip("ESMFold does not output hidden states in the normal way.")
    def test_hidden_states_output(self):
        pass

    @unittest.skip("ESMfold does not output hidden states in the normal way.")
    def test_retain_grad_hidden_states_attentions(self):
        pass

    @unittest.skip("ESMFold only has one output format.")
    def test_model_outputs_equivalence(self):
        pass

    @unittest.skip("This test doesn't work for ESMFold and doesn't test core functionality")
    def test_save_load_fast_init_from_base(self):
        pass

    @unittest.skip("ESMFold does not support input chunking.")
    def test_feed_forward_chunking(self):
        pass

    @unittest.skip("ESMFold doesn't respect you and it certainly doesn't respect your initialization arguments.")
    def test_initialization(self):
        pass

    @unittest.skip("ESMFold doesn't support torchscript compilation.")
    def test_torchscript_output_attentions(self):
        pass

    @unittest.skip("ESMFold doesn't support torchscript compilation.")
    def test_torchscript_output_hidden_state(self):
        pass

    @unittest.skip("ESMFold doesn't support torchscript compilation.")
    def test_torchscript_simple(self):
        pass

    @unittest.skip("ESMFold doesn't support data parallel.")
    def test_multi_gpu_data_parallel_forward(self):
        pass


@require_torch
class EsmModelIntegrationTest(TestCasePlus):
    @slow
    def test_inference_protein_folding(self):
Matt's avatar
Matt committed
273
        model = EsmForProteinFolding.from_pretrained("facebook/esmfold_v1").float()
Matt's avatar
Matt committed
274
275
276
277
278
        model.eval()
        input_ids = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]])
        position_outputs = model(input_ids)["positions"]
        expected_slice = torch.tensor([2.5828, 0.7993, -10.9334], dtype=torch.float32)
        self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0], expected_slice, atol=1e-4))