"evaluate-0.4.2/src/evaluate/inspect.py" did not exist on "ac1924961ddf647bcef5729d56c396bfb9bce224"
test_image_processing_swin2sr.py 6.27 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

import numpy as np

from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available

24
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
NielsRogge's avatar
NielsRogge committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61


if is_torch_available():
    import torch

if is_vision_available():
    from PIL import Image

    from transformers import Swin2SRImageProcessor
    from transformers.image_transforms import get_image_size


class Swin2SRImageProcessingTester(unittest.TestCase):
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        image_size=18,
        min_resolution=30,
        max_resolution=400,
        do_rescale=True,
        rescale_factor=1 / 255,
        do_pad=True,
        pad_size=8,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.image_size = image_size
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.do_rescale = do_rescale
        self.rescale_factor = rescale_factor
        self.do_pad = do_pad
        self.pad_size = pad_size

62
    def prepare_image_processor_dict(self):
NielsRogge's avatar
NielsRogge committed
63
64
65
66
67
68
69
        return {
            "do_rescale": self.do_rescale,
            "rescale_factor": self.rescale_factor,
            "do_pad": self.do_pad,
            "pad_size": self.pad_size,
        }

70
71
    def expected_output_image_shape(self, images):
        img = images[0]
NielsRogge's avatar
NielsRogge committed
72

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
        if isinstance(img, Image.Image):
            input_width, input_height = img.size
        else:
            input_height, input_width = img.shape[-2:]

        pad_height = (input_height // self.pad_size + 1) * self.pad_size - input_height
        pad_width = (input_width // self.pad_size + 1) * self.pad_size - input_width

        return self.num_channels, input_height + pad_height, input_width + pad_width

    def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
        return prepare_image_inputs(
            batch_size=self.batch_size,
            num_channels=self.num_channels,
            min_resolution=self.min_resolution,
            max_resolution=self.max_resolution,
            equal_resolution=equal_resolution,
            numpify=numpify,
            torchify=torchify,
        )
NielsRogge's avatar
NielsRogge committed
93
94
95
96


@require_torch
@require_vision
97
class Swin2SRImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
98
    image_processing_class = Swin2SRImageProcessor if is_vision_available() else None
NielsRogge's avatar
NielsRogge committed
99
100

    def setUp(self):
101
        self.image_processor_tester = Swin2SRImageProcessingTester(self)
NielsRogge's avatar
NielsRogge committed
102
103

    @property
104
105
    def image_processor_dict(self):
        return self.image_processor_tester.prepare_image_processor_dict()
NielsRogge's avatar
NielsRogge committed
106

107
108
109
110
111
112
    def test_image_processor_properties(self):
        image_processor = self.image_processing_class(**self.image_processor_dict)
        self.assertTrue(hasattr(image_processor, "do_rescale"))
        self.assertTrue(hasattr(image_processor, "rescale_factor"))
        self.assertTrue(hasattr(image_processor, "do_pad"))
        self.assertTrue(hasattr(image_processor, "pad_size"))
NielsRogge's avatar
NielsRogge committed
113
114
115

    def calculate_expected_size(self, image):
        old_height, old_width = get_image_size(image)
116
        size = self.image_processor_tester.pad_size
NielsRogge's avatar
NielsRogge committed
117
118
119
120
121

        pad_height = (old_height // size + 1) * size - old_height
        pad_width = (old_width // size + 1) * size - old_width
        return old_height + pad_height, old_width + pad_width

122
    # Swin2SRImageProcessor does not support batched input
NielsRogge's avatar
NielsRogge committed
123
    def test_call_pil(self):
124
125
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
NielsRogge's avatar
NielsRogge committed
126
        # create random PIL images
127
        image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False)
NielsRogge's avatar
NielsRogge committed
128
129
130
131
        for image in image_inputs:
            self.assertIsInstance(image, Image.Image)

        # Test not batched input
132
133
134
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
        expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
        self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
NielsRogge's avatar
NielsRogge committed
135

136
    # Swin2SRImageProcessor does not support batched input
NielsRogge's avatar
NielsRogge committed
137
    def test_call_numpy(self):
138
139
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
NielsRogge's avatar
NielsRogge committed
140
        # create random numpy tensors
141
        image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
NielsRogge's avatar
NielsRogge committed
142
143
144
145
        for image in image_inputs:
            self.assertIsInstance(image, np.ndarray)

        # Test not batched input
146
147
148
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
        expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
        self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
NielsRogge's avatar
NielsRogge committed
149

150
    # Swin2SRImageProcessor does not support batched input
NielsRogge's avatar
NielsRogge committed
151
    def test_call_pytorch(self):
152
153
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
NielsRogge's avatar
NielsRogge committed
154
        # create random PyTorch tensors
155
156
        image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)

NielsRogge's avatar
NielsRogge committed
157
158
159
160
        for image in image_inputs:
            self.assertIsInstance(image, torch.Tensor)

        # Test not batched input
161
162
163
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
        expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
        self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))