test_image_processing_beit.py 10.2 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

19
from datasets import load_dataset
NielsRogge's avatar
NielsRogge committed
20
21

from transformers.testing_utils import require_torch, require_vision
22
from transformers.utils import is_torch_available, is_vision_available
NielsRogge's avatar
NielsRogge committed
23

24
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
NielsRogge's avatar
NielsRogge committed
25
26
27
28
29
30
31
32


if is_torch_available():
    import torch

if is_vision_available():
    from PIL import Image

33
    from transformers import BeitImageProcessor
NielsRogge's avatar
NielsRogge committed
34
35


36
class BeitImageProcessingTester(unittest.TestCase):
NielsRogge's avatar
NielsRogge committed
37
38
39
40
41
42
43
44
45
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        image_size=18,
        min_resolution=30,
        max_resolution=400,
        do_resize=True,
amyeroberts's avatar
amyeroberts committed
46
        size=None,
NielsRogge's avatar
NielsRogge committed
47
        do_center_crop=True,
amyeroberts's avatar
amyeroberts committed
48
        crop_size=None,
NielsRogge's avatar
NielsRogge committed
49
50
51
        do_normalize=True,
        image_mean=[0.5, 0.5, 0.5],
        image_std=[0.5, 0.5, 0.5],
amyeroberts's avatar
amyeroberts committed
52
        do_reduce_labels=False,
NielsRogge's avatar
NielsRogge committed
53
    ):
amyeroberts's avatar
amyeroberts committed
54
55
        size = size if size is not None else {"height": 20, "width": 20}
        crop_size = crop_size if crop_size is not None else {"height": 18, "width": 18}
NielsRogge's avatar
NielsRogge committed
56
57
58
59
60
61
62
63
64
65
66
67
68
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.image_size = image_size
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.do_resize = do_resize
        self.size = size
        self.do_center_crop = do_center_crop
        self.crop_size = crop_size
        self.do_normalize = do_normalize
        self.image_mean = image_mean
        self.image_std = image_std
amyeroberts's avatar
amyeroberts committed
69
        self.do_reduce_labels = do_reduce_labels
NielsRogge's avatar
NielsRogge committed
70

71
    def prepare_image_processor_dict(self):
NielsRogge's avatar
NielsRogge committed
72
73
74
75
76
77
78
79
        return {
            "do_resize": self.do_resize,
            "size": self.size,
            "do_center_crop": self.do_center_crop,
            "crop_size": self.crop_size,
            "do_normalize": self.do_normalize,
            "image_mean": self.image_mean,
            "image_std": self.image_std,
amyeroberts's avatar
amyeroberts committed
80
            "do_reduce_labels": self.do_reduce_labels,
NielsRogge's avatar
NielsRogge committed
81
82
        }

83
84
85
86
87
88
89
90
91
92
93
94
95
96
    def expected_output_image_shape(self, images):
        return self.num_channels, self.crop_size["height"], self.crop_size["width"]

    def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
        return prepare_image_inputs(
            batch_size=self.batch_size,
            num_channels=self.num_channels,
            min_resolution=self.min_resolution,
            max_resolution=self.max_resolution,
            equal_resolution=equal_resolution,
            numpify=numpify,
            torchify=torchify,
        )

NielsRogge's avatar
NielsRogge committed
97

98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
def prepare_semantic_single_inputs():
    dataset = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")

    image = Image.open(dataset[0]["file"])
    map = Image.open(dataset[1]["file"])

    return image, map


def prepare_semantic_batch_inputs():
    ds = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")

    image1 = Image.open(ds[0]["file"])
    map1 = Image.open(ds[1]["file"])
    image2 = Image.open(ds[2]["file"])
    map2 = Image.open(ds[3]["file"])

    return [image1, image2], [map1, map2]


NielsRogge's avatar
NielsRogge committed
118
119
@require_torch
@require_vision
120
class BeitImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
121
    image_processing_class = BeitImageProcessor if is_vision_available() else None
NielsRogge's avatar
NielsRogge committed
122
123

    def setUp(self):
124
        self.image_processor_tester = BeitImageProcessingTester(self)
NielsRogge's avatar
NielsRogge committed
125
126

    @property
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
    def image_processor_dict(self):
        return self.image_processor_tester.prepare_image_processor_dict()

    def test_image_processor_properties(self):
        image_processing = self.image_processing_class(**self.image_processor_dict)
        self.assertTrue(hasattr(image_processing, "do_resize"))
        self.assertTrue(hasattr(image_processing, "size"))
        self.assertTrue(hasattr(image_processing, "do_center_crop"))
        self.assertTrue(hasattr(image_processing, "center_crop"))
        self.assertTrue(hasattr(image_processing, "do_normalize"))
        self.assertTrue(hasattr(image_processing, "image_mean"))
        self.assertTrue(hasattr(image_processing, "image_std"))

    def test_image_processor_from_dict_with_kwargs(self):
        image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
        self.assertEqual(image_processor.size, {"height": 20, "width": 20})
        self.assertEqual(image_processor.crop_size, {"height": 18, "width": 18})
        self.assertEqual(image_processor.do_reduce_labels, False)

        image_processor = self.image_processing_class.from_dict(
            self.image_processor_dict, size=42, crop_size=84, reduce_labels=True
148
        )
149
150
151
        self.assertEqual(image_processor.size, {"height": 42, "width": 42})
        self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})
        self.assertEqual(image_processor.do_reduce_labels, True)
152

153
    def test_call_segmentation_maps(self):
154
155
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
156
        # create random PyTorch tensors
157
        image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)
158
159
160
161
162
163
        maps = []
        for image in image_inputs:
            self.assertIsInstance(image, torch.Tensor)
            maps.append(torch.zeros(image.shape[-2:]).long())

        # Test not batched input
164
        encoding = image_processing(image_inputs[0], maps[0], return_tensors="pt")
165
166
167
168
        self.assertEqual(
            encoding["pixel_values"].shape,
            (
                1,
169
170
171
                self.image_processor_tester.num_channels,
                self.image_processor_tester.crop_size["height"],
                self.image_processor_tester.crop_size["width"],
172
173
174
175
176
177
            ),
        )
        self.assertEqual(
            encoding["labels"].shape,
            (
                1,
178
179
                self.image_processor_tester.crop_size["height"],
                self.image_processor_tester.crop_size["width"],
180
181
182
183
184
185
186
            ),
        )
        self.assertEqual(encoding["labels"].dtype, torch.long)
        self.assertTrue(encoding["labels"].min().item() >= 0)
        self.assertTrue(encoding["labels"].max().item() <= 255)

        # Test batched
187
        encoding = image_processing(image_inputs, maps, return_tensors="pt")
188
189
190
        self.assertEqual(
            encoding["pixel_values"].shape,
            (
191
192
193
194
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
                self.image_processor_tester.crop_size["height"],
                self.image_processor_tester.crop_size["width"],
195
196
197
198
199
            ),
        )
        self.assertEqual(
            encoding["labels"].shape,
            (
200
201
202
                self.image_processor_tester.batch_size,
                self.image_processor_tester.crop_size["height"],
                self.image_processor_tester.crop_size["width"],
203
204
205
206
207
208
209
210
211
            ),
        )
        self.assertEqual(encoding["labels"].dtype, torch.long)
        self.assertTrue(encoding["labels"].min().item() >= 0)
        self.assertTrue(encoding["labels"].max().item() <= 255)

        # Test not batched input (PIL images)
        image, segmentation_map = prepare_semantic_single_inputs()

212
        encoding = image_processing(image, segmentation_map, return_tensors="pt")
213
214
215
216
        self.assertEqual(
            encoding["pixel_values"].shape,
            (
                1,
217
218
219
                self.image_processor_tester.num_channels,
                self.image_processor_tester.crop_size["height"],
                self.image_processor_tester.crop_size["width"],
220
221
222
223
224
225
            ),
        )
        self.assertEqual(
            encoding["labels"].shape,
            (
                1,
226
227
                self.image_processor_tester.crop_size["height"],
                self.image_processor_tester.crop_size["width"],
228
229
230
231
232
233
234
235
236
            ),
        )
        self.assertEqual(encoding["labels"].dtype, torch.long)
        self.assertTrue(encoding["labels"].min().item() >= 0)
        self.assertTrue(encoding["labels"].max().item() <= 255)

        # Test batched input (PIL images)
        images, segmentation_maps = prepare_semantic_batch_inputs()

237
        encoding = image_processing(images, segmentation_maps, return_tensors="pt")
238
239
240
241
        self.assertEqual(
            encoding["pixel_values"].shape,
            (
                2,
242
243
244
                self.image_processor_tester.num_channels,
                self.image_processor_tester.crop_size["height"],
                self.image_processor_tester.crop_size["width"],
245
246
247
248
249
250
            ),
        )
        self.assertEqual(
            encoding["labels"].shape,
            (
                2,
251
252
                self.image_processor_tester.crop_size["height"],
                self.image_processor_tester.crop_size["width"],
253
254
255
256
257
258
259
            ),
        )
        self.assertEqual(encoding["labels"].dtype, torch.long)
        self.assertTrue(encoding["labels"].min().item() >= 0)
        self.assertTrue(encoding["labels"].max().item() <= 255)

    def test_reduce_labels(self):
260
261
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
262
263
264

        # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150
        image, map = prepare_semantic_single_inputs()
265
        encoding = image_processing(image, map, return_tensors="pt")
266
267
268
        self.assertTrue(encoding["labels"].min().item() >= 0)
        self.assertTrue(encoding["labels"].max().item() <= 150)

269
        image_processing.do_reduce_labels = True
270
        encoding = image_processing(image, map, return_tensors="pt")
271
272
        self.assertTrue(encoding["labels"].min().item() >= 0)
        self.assertTrue(encoding["labels"].max().item() <= 255)