test_modeling_tf_sam.py 25 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the TensorFlow SAM model. """


Matt's avatar
Matt committed
18
19
from __future__ import annotations

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import inspect
import unittest

import numpy as np
import requests

from transformers import SamConfig, SamMaskDecoderConfig, SamPromptEncoderConfig, SamVisionConfig
from transformers.testing_utils import require_tf, slow
from transformers.utils import is_tf_available, is_vision_available

from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor
from ...test_pipeline_mixin import PipelineTesterMixin


if is_tf_available():
    import tensorflow as tf

    from transformers import SamProcessor, TFSamModel
39
    from transformers.modeling_tf_utils import keras
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325

if is_vision_available():
    from PIL import Image


class TFSamPromptEncoderTester:
    def __init__(
        self,
        hidden_size=32,
        input_image_size=24,
        patch_size=2,
        mask_input_channels=4,
        num_point_embeddings=4,
        hidden_act="gelu",
    ):
        self.hidden_size = hidden_size
        self.input_image_size = input_image_size
        self.patch_size = patch_size
        self.mask_input_channels = mask_input_channels
        self.num_point_embeddings = num_point_embeddings
        self.hidden_act = hidden_act

    def get_config(self):
        return SamPromptEncoderConfig(
            image_size=self.input_image_size,
            patch_size=self.patch_size,
            mask_input_channels=self.mask_input_channels,
            hidden_size=self.hidden_size,
            num_point_embeddings=self.num_point_embeddings,
            hidden_act=self.hidden_act,
        )

    def prepare_config_and_inputs(self):
        dummy_points = floats_tensor([self.batch_size, 3, 2])
        config = self.get_config()

        return config, dummy_points


class TFSamMaskDecoderTester:
    def __init__(
        self,
        hidden_size=32,
        hidden_act="relu",
        mlp_dim=64,
        num_hidden_layers=2,
        num_attention_heads=4,
        attention_downsample_rate=2,
        num_multimask_outputs=3,
        iou_head_depth=3,
        iou_head_hidden_dim=32,
        layer_norm_eps=1e-6,
    ):
        self.hidden_size = hidden_size
        self.hidden_act = hidden_act
        self.mlp_dim = mlp_dim
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.attention_downsample_rate = attention_downsample_rate
        self.num_multimask_outputs = num_multimask_outputs
        self.iou_head_depth = iou_head_depth
        self.iou_head_hidden_dim = iou_head_hidden_dim
        self.layer_norm_eps = layer_norm_eps

    def get_config(self):
        return SamMaskDecoderConfig(
            hidden_size=self.hidden_size,
            hidden_act=self.hidden_act,
            mlp_dim=self.mlp_dim,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            attention_downsample_rate=self.attention_downsample_rate,
            num_multimask_outputs=self.num_multimask_outputs,
            iou_head_depth=self.iou_head_depth,
            iou_head_hidden_dim=self.iou_head_hidden_dim,
            layer_norm_eps=self.layer_norm_eps,
        )

    def prepare_config_and_inputs(self):
        config = self.get_config()

        dummy_inputs = {
            "image_embedding": floats_tensor([self.batch_size, self.hidden_size]),
        }

        return config, dummy_inputs


class TFSamModelTester:
    def __init__(
        self,
        parent,
        hidden_size=36,
        intermediate_size=72,
        projection_dim=62,
        output_channels=32,
        num_hidden_layers=2,
        num_attention_heads=4,
        num_channels=3,
        image_size=24,
        patch_size=2,
        hidden_act="gelu",
        layer_norm_eps=1e-06,
        dropout=0.0,
        attention_dropout=0.0,
        initializer_range=0.02,
        initializer_factor=1.0,
        qkv_bias=True,
        mlp_ratio=4.0,
        use_abs_pos=True,
        use_rel_pos=True,
        rel_pos_zero_init=False,
        window_size=14,
        global_attn_indexes=[2, 5, 8, 11],
        num_pos_feats=16,
        mlp_dim=None,
        batch_size=2,
    ):
        self.parent = parent
        self.image_size = image_size
        self.patch_size = patch_size
        self.output_channels = output_channels
        self.num_channels = num_channels
        self.hidden_size = hidden_size
        self.projection_dim = projection_dim
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.dropout = dropout
        self.attention_dropout = attention_dropout
        self.initializer_range = initializer_range
        self.initializer_factor = initializer_factor
        self.hidden_act = hidden_act
        self.layer_norm_eps = layer_norm_eps
        self.qkv_bias = qkv_bias
        self.mlp_ratio = mlp_ratio
        self.use_abs_pos = use_abs_pos
        self.use_rel_pos = use_rel_pos
        self.rel_pos_zero_init = rel_pos_zero_init
        self.window_size = window_size
        self.global_attn_indexes = global_attn_indexes
        self.num_pos_feats = num_pos_feats
        self.mlp_dim = mlp_dim
        self.batch_size = batch_size

        # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
        num_patches = (image_size // patch_size) ** 2
        self.seq_length = num_patches + 1

        self.prompt_encoder_tester = TFSamPromptEncoderTester()
        self.mask_decoder_tester = TFSamMaskDecoderTester()

    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
        config = self.get_config()

        return config, pixel_values

    def get_config(self):
        vision_config = SamVisionConfig(
            image_size=self.image_size,
            patch_size=self.patch_size,
            num_channels=self.num_channels,
            hidden_size=self.hidden_size,
            projection_dim=self.projection_dim,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            dropout=self.dropout,
            attention_dropout=self.attention_dropout,
            initializer_range=self.initializer_range,
            initializer_factor=self.initializer_factor,
            output_channels=self.output_channels,
            qkv_bias=self.qkv_bias,
            mlp_ratio=self.mlp_ratio,
            use_abs_pos=self.use_abs_pos,
            use_rel_pos=self.use_rel_pos,
            rel_pos_zero_init=self.rel_pos_zero_init,
            window_size=self.window_size,
            global_attn_indexes=self.global_attn_indexes,
            num_pos_feats=self.num_pos_feats,
            mlp_dim=self.mlp_dim,
        )

        prompt_encoder_config = self.prompt_encoder_tester.get_config()

        mask_decoder_config = self.mask_decoder_tester.get_config()

        return SamConfig(
            vision_config=vision_config,
            prompt_encoder_config=prompt_encoder_config,
            mask_decoder_config=mask_decoder_config,
        )

    def create_and_check_model(self, config, pixel_values):
        model = TFSamModel(config=config)
        result = model(pixel_values)
        self.parent.assertEqual(result.iou_scores.shape, (self.batch_size, 1, 3))
        self.parent.assertEqual(result.pred_masks.shape[:3], (self.batch_size, 1, 3))

    def create_and_check_get_image_features(self, config, pixel_values):
        model = TFSamModel(config=config)
        result = model.get_image_embeddings(pixel_values)
        self.parent.assertEqual(result[0].shape, (self.output_channels, 12, 12))

    def create_and_check_get_image_hidden_states(self, config, pixel_values):
        model = TFSamModel(config=config)
        result = model.vision_encoder(
            pixel_values,
            output_hidden_states=True,
            return_dict=True,
        )

        # after computing the convolutional features
        expected_hidden_states_shape = (self.batch_size, 12, 12, 36)
        self.parent.assertEqual(len(result[1]), self.num_hidden_layers + 1)
        self.parent.assertEqual(result[1][0].shape, expected_hidden_states_shape)

        result = model.vision_encoder(
            pixel_values,
            output_hidden_states=True,
            return_dict=False,
        )

        # after computing the convolutional features
        expected_hidden_states_shape = (self.batch_size, 12, 12, 36)
        self.parent.assertEqual(len(result[1]), self.num_hidden_layers + 1)
        self.parent.assertEqual(result[1][0].shape, expected_hidden_states_shape)

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, pixel_values = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_tf
class TFSamModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
    """
    Here we also overwrite some of the tests of test_modeling_common.py, as SAM's vision encoder does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

    all_model_classes = (TFSamModel,) if is_tf_available() else ()
    pipeline_model_mapping = (
        {"feature-extraction": TFSamModel, "mask-generation": TFSamModel} if is_tf_available() else {}
    )
    test_pruning = False
    test_resize_embeddings = False
    test_head_masking = False
    test_onnx = False

    # TODO: Fix me @Arthur: `run_batch_test` in `tests/test_pipeline_mixin.py` not working
    def is_pipeline_test_to_skip(
        self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
    ):
        return True

    def setUp(self):
        self.model_tester = TFSamModelTester(self)
        self.vision_config_tester = ConfigTester(self, config_class=SamVisionConfig, has_text_modality=False)
        self.prompt_encoder_config_tester = ConfigTester(
            self,
            config_class=SamPromptEncoderConfig,
            has_text_modality=False,
            num_attention_heads=12,
            num_hidden_layers=2,
        )
        self.mask_decoder_config_tester = ConfigTester(
            self, config_class=SamMaskDecoderConfig, has_text_modality=False
        )

    def test_config(self):
        self.vision_config_tester.run_common_tests()
        self.prompt_encoder_config_tester.run_common_tests()
        self.mask_decoder_config_tester.run_common_tests()

    @unittest.skip(reason="SAM's vision encoder does not use inputs_embeds")
    def test_inputs_embeds(self):
        pass

    def test_model_common_attributes(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
326
            self.assertIsInstance(model.get_input_embeddings(), (keras.layers.Layer))
327
            x = model.get_output_embeddings()
328
            self.assertTrue(x is None or isinstance(x, keras.layers.Dense))
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.call)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["pixel_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_get_image_features(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_get_image_features(*config_and_inputs)

    def test_image_hidden_states(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_get_image_hidden_states(*config_and_inputs)

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        expected_vision_attention_shape = (
            self.model_tester.batch_size * self.model_tester.num_attention_heads,
            196,
            196,
        )
        expected_mask_decoder_attention_shape = (self.model_tester.batch_size, 1, 144, 32)

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
            config.return_dict = True
            model = model_class(config)
            outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            vision_attentions = outputs.vision_attentions
            self.assertEqual(len(vision_attentions), self.model_tester.num_hidden_layers)

            mask_decoder_attentions = outputs.mask_decoder_attentions
            self.assertEqual(len(mask_decoder_attentions), self.model_tester.mask_decoder_tester.num_hidden_layers)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            vision_attentions = outputs.vision_attentions
            self.assertEqual(len(vision_attentions), self.model_tester.num_hidden_layers)

            mask_decoder_attentions = outputs.mask_decoder_attentions
            self.assertEqual(len(mask_decoder_attentions), self.model_tester.mask_decoder_tester.num_hidden_layers)

            self.assertListEqual(
                list(vision_attentions[0].shape[-4:]),
                list(expected_vision_attention_shape),
            )

            self.assertListEqual(
                list(mask_decoder_attentions[0].shape[-4:]),
                list(expected_mask_decoder_attention_shape),
            )

    @unittest.skip(reason="Hidden_states is tested in create_and_check_model tests")
    def test_hidden_states_output(self):
        pass

    @slow
    def test_model_from_pretrained(self):
405
406
        model = TFSamModel.from_pretrained("facebook/sam-vit-base")  # sam-vit-huge blows out our memory
        self.assertIsNotNone(model)
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430

    def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=5e-4, name="outputs", attributes=None):
        super().check_pt_tf_outputs(
            tf_outputs=tf_outputs,
            pt_outputs=pt_outputs,
            model_class=model_class,
            tol=tol,
            name=name,
            attributes=attributes,
        )


def prepare_image():
    img_url = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png"
    raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB")
    return raw_image


def prepare_dog_img():
    img_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/dog-sam.png"
    raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB")
    return raw_image


431
@require_tf
432
@slow
433
class TFSamModelIntegrationTest(unittest.TestCase):
434
    def test_inference_mask_generation_no_point(self):
435
436
        model = TFSamModel.from_pretrained("facebook/sam-vit-base")
        processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
437
438
439
440
441
442
443

        raw_image = prepare_image()
        inputs = processor(images=raw_image, return_tensors="tf")

        outputs = model(**inputs)
        scores = tf.squeeze(outputs.iou_scores)
        masks = outputs.pred_masks[0, 0, 0, 0, :3]
444
445
        self.assertTrue(np.allclose(scores[-1].numpy(), np.array(0.4515), atol=2e-4))
        self.assertTrue(np.allclose(masks.numpy(), np.array([-4.1807, -3.4949, -3.4483]), atol=1e-2))
446
447

    def test_inference_mask_generation_one_point_one_bb(self):
448
449
        model = TFSamModel.from_pretrained("facebook/sam-vit-base")
        processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
450
451
452
453
454
455
456
457
458
459
460

        raw_image = prepare_image()
        input_boxes = [[[650, 900, 1000, 1250]]]
        input_points = [[[820, 1080]]]

        inputs = processor(images=raw_image, input_boxes=input_boxes, input_points=input_points, return_tensors="tf")

        outputs = model(**inputs)
        scores = tf.squeeze(outputs.iou_scores)
        masks = outputs.pred_masks[0, 0, 0, 0, :3]

461
462
        self.assertTrue(np.allclose(scores[-1], np.array(0.9566), atol=2e-4))
        self.assertTrue(np.allclose(masks.numpy(), np.array([-12.7657, -12.3683, -12.5985]), atol=2e-2))
463
464

    def test_inference_mask_generation_batched_points_batched_images(self):
465
466
        model = TFSamModel.from_pretrained("facebook/sam-vit-base")
        processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482

        raw_image = prepare_image()
        input_points = [
            [[[820, 1080]], [[820, 1080]], [[820, 1080]], [[820, 1080]]],
            [[[510, 1080]], [[820, 1080]], [[820, 1080]], [[820, 1080]]],
        ]

        inputs = processor(images=[raw_image, raw_image], input_points=input_points, return_tensors="tf")

        outputs = model(**inputs)
        scores = tf.squeeze(outputs.iou_scores)
        masks = outputs.pred_masks[0, 0, 0, 0, :3]

        EXPECTED_SCORES = np.array(
            [
                [
483
484
485
486
                    [0.6765, 0.9379, 0.8803],
                    [0.6765, 0.9379, 0.8803],
                    [0.6765, 0.9379, 0.8803],
                    [0.6765, 0.9379, 0.8803],
487
488
                ],
                [
489
490
491
492
                    [0.3317, 0.7264, 0.7646],
                    [0.6765, 0.9379, 0.8803],
                    [0.6765, 0.9379, 0.8803],
                    [0.6765, 0.9379, 0.8803],
493
494
495
                ],
            ]
        )
496
        EXPECTED_MASKS = np.array([-2.8552, -2.7990, -2.9612])
497
498
499
500
        self.assertTrue(np.allclose(scores.numpy(), EXPECTED_SCORES, atol=1e-3))
        self.assertTrue(np.allclose(masks.numpy(), EXPECTED_MASKS, atol=3e-2))

    def test_inference_mask_generation_one_point_one_bb_zero(self):
501
502
        model = TFSamModel.from_pretrained("facebook/sam-vit-base")
        processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518

        raw_image = prepare_image()
        input_boxes = [[[620, 900, 1000, 1255]]]
        input_points = [[[820, 1080]]]
        labels = [[0]]

        inputs = processor(
            images=raw_image,
            input_boxes=input_boxes,
            input_points=input_points,
            input_labels=labels,
            return_tensors="tf",
        )

        outputs = model(**inputs)
        scores = tf.squeeze(outputs.iou_scores)
519
        self.assertTrue(np.allclose(scores[-1].numpy(), np.array(0.7894), atol=1e-4))
520
521

    def test_inference_mask_generation_one_point(self):
522
523
        model = TFSamModel.from_pretrained("facebook/sam-vit-base")
        processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
524
525
526
527
528
529
530
531
532
533
534

        raw_image = prepare_image()

        input_points = [[[400, 650]]]
        input_labels = [[1]]

        inputs = processor(images=raw_image, input_points=input_points, input_labels=input_labels, return_tensors="tf")

        outputs = model(**inputs)
        scores = tf.squeeze(outputs.iou_scores)

535
        self.assertTrue(np.allclose(scores[-1], np.array(0.9675), atol=1e-4))
536
537
538
539
540
541
542
543
544

        # With no label
        input_points = [[[400, 650]]]

        inputs = processor(images=raw_image, input_points=input_points, return_tensors="tf")

        outputs = model(**inputs)
        scores = tf.squeeze(outputs.iou_scores)

545
        self.assertTrue(np.allclose(scores[-1].numpy(), np.array(0.9675), atol=1e-4))
546
547

    def test_inference_mask_generation_two_points(self):
548
549
        model = TFSamModel.from_pretrained("facebook/sam-vit-base")
        processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
550
551
552
553
554
555
556
557
558
559
        raw_image = prepare_image()

        input_points = [[[400, 650], [800, 650]]]
        input_labels = [[1, 1]]

        inputs = processor(images=raw_image, input_points=input_points, input_labels=input_labels, return_tensors="tf")

        outputs = model(**inputs)
        scores = tf.squeeze(outputs.iou_scores)

560
        self.assertTrue(np.allclose(scores[-1].numpy(), np.array(0.9762), atol=1e-4))
561
562
563
564
565
566
567

        # no labels
        inputs = processor(images=raw_image, input_points=input_points, return_tensors="tf")

        outputs = model(**inputs)
        scores = tf.squeeze(outputs.iou_scores)

568
        self.assertTrue(np.allclose(scores[-1].numpy(), np.array(0.9762), atol=1e-4))
569
570

    def test_inference_mask_generation_two_points_batched(self):
571
572
        model = TFSamModel.from_pretrained("facebook/sam-vit-base")
        processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
573
574
575
576
577
578
579
580
581
582
583
584
585

        raw_image = prepare_image()

        input_points = [[[400, 650], [800, 650]], [[400, 650]]]
        input_labels = [[1, 1], [1]]

        inputs = processor(
            images=[raw_image, raw_image], input_points=input_points, input_labels=input_labels, return_tensors="tf"
        )

        outputs = model(**inputs)
        scores = tf.squeeze(outputs.iou_scores)

586
587
        self.assertTrue(np.allclose(scores[0][-1].numpy(), np.array(0.9762), atol=1e-4))
        self.assertTrue(np.allclose(scores[1][-1], np.array(0.9637), atol=1e-4))
588
589

    def test_inference_mask_generation_one_box(self):
590
591
        model = TFSamModel.from_pretrained("facebook/sam-vit-base")
        processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
592
593
594
595
596
597
598
599
600
601

        raw_image = prepare_image()

        input_boxes = [[[75, 275, 1725, 850]]]

        inputs = processor(images=raw_image, input_boxes=input_boxes, return_tensors="tf")

        outputs = model(**inputs)
        scores = tf.squeeze(outputs.iou_scores)

602
        self.assertTrue(np.allclose(scores[-1].numpy(), np.array(0.7937), atol=1e-4))
603
604

    def test_inference_mask_generation_batched_image_one_point(self):
605
606
        model = TFSamModel.from_pretrained("facebook/sam-vit-base")
        processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626

        raw_image = prepare_image()
        raw_dog_image = prepare_dog_img()

        input_points = [[[820, 1080]], [[220, 470]]]

        inputs = processor(images=[raw_image, raw_dog_image], input_points=input_points, return_tensors="tf")

        outputs = model(**inputs)
        scores_batched = tf.squeeze(outputs.iou_scores)

        input_points = [[[220, 470]]]

        inputs = processor(images=raw_dog_image, input_points=input_points, return_tensors="tf")

        outputs = model(**inputs)
        scores_single = tf.squeeze(outputs.iou_scores)
        self.assertTrue(np.allclose(scores_batched[1, :].numpy(), scores_single.numpy(), atol=1e-4))

    def test_inference_mask_generation_two_points_point_batch(self):
627
628
        model = TFSamModel.from_pretrained("facebook/sam-vit-base")
        processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
629
630
631

        raw_image = prepare_image()

632
        input_points = tf.convert_to_tensor([[[400, 650]], [[220, 470]]])  # fmt: skip
633
634
635
636
637
638
639
640
641
642
643
644

        input_points = tf.expand_dims(input_points, 0)

        inputs = processor(raw_image, input_points=input_points, return_tensors="tf")

        outputs = model(**inputs)

        iou_scores = outputs.iou_scores
        self.assertTrue(iou_scores.shape == (1, 2, 3))
        self.assertTrue(
            np.allclose(
                iou_scores.numpy(),
645
                np.array([[[0.9105, 0.9825, 0.9675], [0.7646, 0.7943, 0.7774]]]),
646
647
648
649
650
651
                atol=1e-4,
                rtol=1e-4,
            )
        )

    def test_inference_mask_generation_three_boxes_point_batch(self):
652
653
        model = TFSamModel.from_pretrained("facebook/sam-vit-base")
        processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
654
655
656
657
658

        raw_image = prepare_image()

        # fmt: off
        input_boxes = tf.convert_to_tensor([[[620, 900, 1000, 1255]], [[75, 275, 1725, 850]],  [[75, 275, 1725, 850]]])
659
660
661
        EXPECTED_IOU = np.array([[[0.9773, 0.9881, 0.9522],
         [0.5996, 0.7661, 0.7937],
         [0.5996, 0.7661, 0.7937]]])
662
663
664
665
666
667
668
669
670
671
        # fmt: on
        input_boxes = tf.expand_dims(input_boxes, 0)

        inputs = processor(raw_image, input_boxes=input_boxes, return_tensors="tf")

        outputs = model(**inputs)

        iou_scores = outputs.iou_scores
        self.assertTrue(iou_scores.shape == (1, 3, 3))
        self.assertTrue(np.allclose(iou_scores.numpy(), EXPECTED_IOU, atol=1e-4, rtol=1e-4))