test_modeling_tf_transfo_xl.py 7.98 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
17

import random
18
import unittest
Aymeric Augustin's avatar
Aymeric Augustin committed
19
20

from transformers import TransfoXLConfig, is_tf_available
21

22
from .test_configuration_common import ConfigTester
23
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
24
from .utils import CACHE_DIR, require_tf, slow
25
26
27
28


if is_tf_available():
    import tensorflow as tf
29
30
31
32
33
    from transformers.modeling_tf_transfo_xl import (
        TFTransfoXLModel,
        TFTransfoXLLMHeadModel,
        TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP,
    )
34
35


36
@require_tf
37
class TFTransfoXLModelTest(TFModelTesterMixin, unittest.TestCase):
38
39

    all_model_classes = (TFTransfoXLModel, TFTransfoXLLMHeadModel) if is_tf_available() else ()
40
41
    all_generative_model_classes = () if is_tf_available() else ()
    # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented
42
43
44
45
46
    test_pruning = False
    test_torchscript = False
    test_resize_embeddings = False

    class TFTransfoXLModelTester(object):
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
        def __init__(
            self,
            parent,
            batch_size=13,
            seq_length=7,
            mem_len=30,
            clamp_len=15,
            is_training=True,
            use_labels=True,
            vocab_size=99,
            cutoffs=[10, 50, 80],
            hidden_size=32,
            d_embed=32,
            num_attention_heads=4,
            d_head=8,
            d_inner=128,
            div_val=2,
            num_hidden_layers=5,
            scope=None,
            seed=1,
67
            eos_token_id=0,
68
        ):
69
70
71
72
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.mem_len = mem_len
thomwolf's avatar
thomwolf committed
73
            self.key_length = seq_length + mem_len
74
75
76
77
78
79
80
81
82
83
84
85
86
87
            self.clamp_len = clamp_len
            self.is_training = is_training
            self.use_labels = use_labels
            self.vocab_size = vocab_size
            self.cutoffs = cutoffs
            self.hidden_size = hidden_size
            self.d_embed = d_embed
            self.num_attention_heads = num_attention_heads
            self.d_head = d_head
            self.d_inner = d_inner
            self.div_val = div_val
            self.num_hidden_layers = num_hidden_layers
            self.scope = scope
            self.seed = seed
88
            self.eos_token_id = eos_token_id
89
90
91
92
93
94
95
96
97
98

        def prepare_config_and_inputs(self):
            input_ids_1 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
            input_ids_2 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

            lm_labels = None
            if self.use_labels:
                lm_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

            config = TransfoXLConfig(
thomwolf's avatar
thomwolf committed
99
                vocab_size=self.vocab_size,
100
101
102
103
104
105
106
107
108
                mem_len=self.mem_len,
                clamp_len=self.clamp_len,
                cutoffs=self.cutoffs,
                d_model=self.hidden_size,
                d_embed=self.d_embed,
                n_head=self.num_attention_heads,
                d_head=self.d_head,
                d_inner=self.d_inner,
                div_val=self.div_val,
109
                n_layer=self.num_hidden_layers,
110
                eos_token_ids=self.eos_token_id,
111
            )
112
113
114
115
116
117
118
119
120
121
122
123

            return (config, input_ids_1, input_ids_2, lm_labels)

        def set_seed(self):
            random.seed(self.seed)
            tf.random.set_seed(self.seed)

        def create_and_check_transfo_xl_model(self, config, input_ids_1, input_ids_2, lm_labels):
            model = TFTransfoXLModel(config)

            hidden_states_1, mems_1 = model(input_ids_1)

124
            inputs = {"input_ids": input_ids_2, "mems": mems_1}
125
126
127
128
129
130
131
132
133
134
135

            hidden_states_2, mems_2 = model(inputs)

            result = {
                "hidden_states_1": hidden_states_1.numpy(),
                "mems_1": [mem.numpy() for mem in mems_1],
                "hidden_states_2": hidden_states_2.numpy(),
                "mems_2": [mem.numpy() for mem in mems_2],
            }

            self.parent.assertListEqual(
136
137
                list(result["hidden_states_1"].shape), [self.batch_size, self.seq_length, self.hidden_size]
            )
138
            self.parent.assertListEqual(
139
140
                list(result["hidden_states_2"].shape), [self.batch_size, self.seq_length, self.hidden_size]
            )
141
142
            self.parent.assertListEqual(
                list(list(mem.shape) for mem in result["mems_1"]),
143
144
                [[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )
145
146
            self.parent.assertListEqual(
                list(list(mem.shape) for mem in result["mems_2"]),
147
148
                [[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )
149
150
151
152
153
154

        def create_and_check_transfo_xl_lm_head(self, config, input_ids_1, input_ids_2, lm_labels):
            model = TFTransfoXLLMHeadModel(config)

            lm_logits_1, mems_1 = model(input_ids_1)

155
            inputs = {"input_ids": input_ids_1, "labels": lm_labels}
156
157
158
159
            _, mems_1 = model(inputs)

            lm_logits_2, mems_2 = model([input_ids_2, mems_1])

160
            inputs = {"input_ids": input_ids_1, "mems": mems_1, "labels": lm_labels}
161
162
163
164
165
166
167
168
169
170
171

            _, mems_2 = model(inputs)

            result = {
                "mems_1": [mem.numpy() for mem in mems_1],
                "lm_logits_1": lm_logits_1.numpy(),
                "mems_2": [mem.numpy() for mem in mems_2],
                "lm_logits_2": lm_logits_2.numpy(),
            }

            self.parent.assertListEqual(
172
173
                list(result["lm_logits_1"].shape), [self.batch_size, self.seq_length, self.vocab_size]
            )
174
175
            self.parent.assertListEqual(
                list(list(mem.shape) for mem in result["mems_1"]),
176
177
                [[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )
178
179

            self.parent.assertListEqual(
180
181
                list(result["lm_logits_2"].shape), [self.batch_size, self.seq_length, self.vocab_size]
            )
182
183
            self.parent.assertListEqual(
                list(list(mem.shape) for mem in result["mems_2"]),
184
185
                [[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )
186
187
188
189

        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()
            (config, input_ids_1, input_ids_2, lm_labels) = config_and_inputs
190
            inputs_dict = {"input_ids": input_ids_1}
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
            return config, inputs_dict

    def setUp(self):
        self.model_tester = TFTransfoXLModelTest.TFTransfoXLModelTester(self)
        self.config_tester = ConfigTester(self, config_class=TransfoXLConfig, d_embed=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_transfo_xl_model(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_transfo_xl_model(*config_and_inputs)

    def test_transfo_xl_lm_head(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_transfo_xl_lm_head(*config_and_inputs)

210
    @slow
211
212
    def test_model_from_pretrained(self):
        for model_name in list(TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
213
            model = TFTransfoXLModel.from_pretrained(model_name, cache_dir=CACHE_DIR)
214
            self.assertIsNotNone(model)