test_modeling_tf_openai_gpt.py 9.69 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

17
18
import unittest

Aymeric Augustin's avatar
Aymeric Augustin committed
19
from transformers import OpenAIGPTConfig, is_tf_available
thomwolf's avatar
thomwolf committed
20

21
from .test_configuration_common import ConfigTester
22
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
23
from .utils import CACHE_DIR, require_tf, slow
thomwolf's avatar
thomwolf committed
24
25
26
27


if is_tf_available():
    import tensorflow as tf
28
29
30
31
32
33
    from transformers.modeling_tf_openai import (
        TFOpenAIGPTModel,
        TFOpenAIGPTLMHeadModel,
        TFOpenAIGPTDoubleHeadsModel,
        TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP,
    )
thomwolf's avatar
thomwolf committed
34
35


36
@require_tf
37
class TFOpenAIGPTModelTest(TFModelTesterMixin, unittest.TestCase):
thomwolf's avatar
thomwolf committed
38

39
40
41
    all_model_classes = (
        (TFOpenAIGPTModel, TFOpenAIGPTLMHeadModel, TFOpenAIGPTDoubleHeadsModel) if is_tf_available() else ()
    )
42
43
44
    all_generative_model_classes = (
        (TFOpenAIGPTLMHeadModel,) if is_tf_available() else ()
    )  # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
thomwolf's avatar
thomwolf committed
45
46

    class TFOpenAIGPTModelTester(object):
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
        def __init__(
            self,
            parent,
            batch_size=13,
            seq_length=7,
            is_training=True,
            use_token_type_ids=True,
            use_input_mask=True,
            use_labels=True,
            use_mc_token_ids=True,
            vocab_size=99,
            hidden_size=32,
            num_hidden_layers=5,
            num_attention_heads=4,
            intermediate_size=37,
            hidden_act="gelu",
            hidden_dropout_prob=0.1,
            attention_probs_dropout_prob=0.1,
            max_position_embeddings=512,
            type_vocab_size=16,
            type_sequence_label_size=2,
            initializer_range=0.02,
            num_labels=3,
            num_choices=4,
            scope=None,
        ):
thomwolf's avatar
thomwolf committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.is_training = is_training
            self.use_token_type_ids = use_token_type_ids
            self.use_input_mask = use_input_mask
            self.use_labels = use_labels
            self.use_mc_token_ids = use_mc_token_ids
            self.vocab_size = vocab_size
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.intermediate_size = intermediate_size
            self.hidden_act = hidden_act
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.type_sequence_label_size = type_sequence_label_size
            self.initializer_range = initializer_range
            self.num_labels = num_labels
            self.num_choices = num_choices
            self.scope = scope

        def prepare_config_and_inputs(self):
            input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

            input_mask = None
            if self.use_input_mask:
                input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

            token_type_ids = None
            if self.use_token_type_ids:
                token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

            mc_token_ids = None
            if self.use_mc_token_ids:
                mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)

            sequence_labels = None
            token_labels = None
            choice_labels = None
            if self.use_labels:
                sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
                token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
                choice_labels = ids_tensor([self.batch_size], self.num_choices)

            config = OpenAIGPTConfig(
thomwolf's avatar
thomwolf committed
121
                vocab_size=self.vocab_size,
thomwolf's avatar
thomwolf committed
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
                n_embd=self.hidden_size,
                n_layer=self.num_hidden_layers,
                n_head=self.num_attention_heads,
                # intermediate_size=self.intermediate_size,
                # hidden_act=self.hidden_act,
                # hidden_dropout_prob=self.hidden_dropout_prob,
                # attention_probs_dropout_prob=self.attention_probs_dropout_prob,
                n_positions=self.max_position_embeddings,
                n_ctx=self.max_position_embeddings
                # type_vocab_size=self.type_vocab_size,
                # initializer_range=self.initializer_range
            )

            head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)

137
138
139
140
141
142
143
144
145
146
147
            return (
                config,
                input_ids,
                input_mask,
                head_mask,
                token_type_ids,
                mc_token_ids,
                sequence_labels,
                token_labels,
                choice_labels,
            )
thomwolf's avatar
thomwolf committed
148
149
150

        def create_and_check_openai_gpt_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
            model = TFOpenAIGPTModel(config=config)
151
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
thomwolf's avatar
thomwolf committed
152
153
154
155
156
157
158
159
160
161
162
            sequence_output = model(inputs)[0]

            inputs = [input_ids, input_mask]
            sequence_output = model(inputs)[0]

            sequence_output = model(input_ids)[0]

            result = {
                "sequence_output": sequence_output.numpy(),
            }
            self.parent.assertListEqual(
163
164
                list(result["sequence_output"].shape), [self.batch_size, self.seq_length, self.hidden_size]
            )
thomwolf's avatar
thomwolf committed
165
166
167

        def create_and_check_openai_gpt_lm_head(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
            model = TFOpenAIGPTLMHeadModel(config=config)
168
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
thomwolf's avatar
thomwolf committed
169
170
171
172
173
            prediction_scores = model(inputs)[0]
            result = {
                "prediction_scores": prediction_scores.numpy(),
            }
            self.parent.assertListEqual(
174
175
                list(result["prediction_scores"].shape), [self.batch_size, self.seq_length, self.vocab_size]
            )
thomwolf's avatar
thomwolf committed
176

177
178
179
        def create_and_check_openai_gpt_double_head(
            self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, *args
        ):
thomwolf's avatar
thomwolf committed
180
181
182
183
184
185
            model = TFOpenAIGPTDoubleHeadsModel(config=config)

            multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
            multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
            multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))

186
187
188
189
190
            inputs = {
                "input_ids": multiple_choice_inputs_ids,
                "mc_token_ids": mc_token_ids,
                "attention_mask": multiple_choice_input_mask,
                "token_type_ids": multiple_choice_token_type_ids,
thomwolf's avatar
thomwolf committed
191
            }
192
193
            lm_logits, mc_logits = model(inputs)[:2]
            result = {"lm_logits": lm_logits.numpy(), "mc_logits": mc_logits.numpy()}
thomwolf's avatar
thomwolf committed
194
            self.parent.assertListEqual(
195
196
197
                list(result["lm_logits"].shape), [self.batch_size, self.num_choices, self.seq_length, self.vocab_size]
            )
            self.parent.assertListEqual(list(result["mc_logits"].shape), [self.batch_size, self.num_choices])
thomwolf's avatar
thomwolf committed
198
199
200
201

        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()

202
203
204
205
206
207
208
209
210
211
212
213
214
            (
                config,
                input_ids,
                input_mask,
                head_mask,
                token_type_ids,
                mc_token_ids,
                sequence_labels,
                token_labels,
                choice_labels,
            ) = config_and_inputs

            inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
thomwolf's avatar
thomwolf committed
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
            return config, inputs_dict

    def setUp(self):
        self.model_tester = TFOpenAIGPTModelTest.TFOpenAIGPTModelTester(self)
        self.config_tester = ConfigTester(self, config_class=OpenAIGPTConfig, n_embd=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_openai_gpt_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_openai_gpt_model(*config_and_inputs)

    def test_openai_gpt_lm_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_openai_gpt_lm_head(*config_and_inputs)

    def test_openai_gpt_double_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_openai_gpt_double_head(*config_and_inputs)

236
    @slow
thomwolf's avatar
thomwolf committed
237
238
    def test_model_from_pretrained(self):
        for model_name in list(TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
239
            model = TFOpenAIGPTModel.from_pretrained(model_name, cache_dir=CACHE_DIR)
thomwolf's avatar
thomwolf committed
240
            self.assertIsNotNone(model)