bertarize.py 5.04 KB
Newer Older
Victor SANH's avatar
Victor SANH committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Copyright 2020-present, the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Once a model has been fine-pruned, the weights that are masked during the forward pass can be pruned once for all.
For instance, once the a model from the :class:`~emmental.MaskedBertForSequenceClassification` is trained, it can be saved (and then loaded)
as a standard :class:`~transformers.BertForSequenceClassification`.
"""

Victor SANH's avatar
Victor SANH committed
20
import argparse
Victor SANH's avatar
Victor SANH committed
21
22
23
24
import os
import shutil

import torch
Victor SANH's avatar
Victor SANH committed
25
from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer
Victor SANH's avatar
Victor SANH committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41


def main(args):
    pruning_method = args.pruning_method
    threshold = args.threshold

    model_name_or_path = args.model_name_or_path.rstrip("/")
    target_model_path = args.target_model_path

    print(f"Load fine-pruned model from {model_name_or_path}")
    model = torch.load(os.path.join(model_name_or_path, "pytorch_model.bin"))
    pruned_model = {}

    for name, tensor in model.items():
        if "embeddings" in name or "LayerNorm" in name or "pooler" in name:
            pruned_model[name] = tensor
Victor SANH's avatar
Victor SANH committed
42
            print(f"Copied layer {name}")
Victor SANH's avatar
Victor SANH committed
43
44
        elif "classifier" in name or "qa_output" in name:
            pruned_model[name] = tensor
Victor SANH's avatar
Victor SANH committed
45
            print(f"Copied layer {name}")
Victor SANH's avatar
Victor SANH committed
46
47
        elif "bias" in name:
            pruned_model[name] = tensor
Victor SANH's avatar
Victor SANH committed
48
            print(f"Copied layer {name}")
Victor SANH's avatar
Victor SANH committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
        else:
            if pruning_method == "magnitude":
                mask = MagnitudeBinarizer.apply(inputs=tensor, threshold=threshold)
                pruned_model[name] = tensor * mask
                print(f"Pruned layer {name}")
            elif pruning_method == "topK":
                if "mask_scores" in name:
                    continue
                prefix_ = name[:-6]
                scores = model[f"{prefix_}mask_scores"]
                mask = TopKBinarizer.apply(scores, threshold)
                pruned_model[name] = tensor * mask
                print(f"Pruned layer {name}")
            elif pruning_method == "sigmoied_threshold":
                if "mask_scores" in name:
                    continue
                prefix_ = name[:-6]
                scores = model[f"{prefix_}mask_scores"]
                mask = ThresholdBinarizer.apply(scores, threshold, True)
                pruned_model[name] = tensor * mask
                print(f"Pruned layer {name}")
            elif pruning_method == "l0":
                if "mask_scores" in name:
                    continue
                prefix_ = name[:-6]
                scores = model[f"{prefix_}mask_scores"]
                l, r = -0.1, 1.1
                s = torch.sigmoid(scores)
                s_bar = s * (r - l) + l
                mask = s_bar.clamp(min=0.0, max=1.0)
                pruned_model[name] = tensor * mask
                print(f"Pruned layer {name}")
            else:
                raise ValueError("Unknown pruning method")

    if target_model_path is None:
        target_model_path = os.path.join(
            os.path.dirname(model_name_or_path), f"bertarized_{os.path.basename(model_name_or_path)}"
        )

    if not os.path.isdir(target_model_path):
        shutil.copytree(model_name_or_path, target_model_path)
        print(f"\nCreated folder {target_model_path}")

    torch.save(pruned_model, os.path.join(target_model_path, "pytorch_model.bin"))
    print("\nPruned model saved! See you later!")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--pruning_method",
Victor SANH's avatar
Victor SANH committed
102
        choices=["l0", "magnitude", "topK", "sigmoied_threshold"],
Victor SANH's avatar
Victor SANH committed
103
104
        type=str,
        required=True,
Sylvain Gugger's avatar
Sylvain Gugger committed
105
106
107
108
        help=(
            "Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,"
            " sigmoied_threshold = Soft movement pruning)"
        ),
Victor SANH's avatar
Victor SANH committed
109
110
111
112
113
    )
    parser.add_argument(
        "--threshold",
        type=float,
        required=False,
Sylvain Gugger's avatar
Sylvain Gugger committed
114
        help=(
115
116
            "For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model. "
            "For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared. "
Sylvain Gugger's avatar
Sylvain Gugger committed
117
118
            "Not needed for `l0`"
        ),
Victor SANH's avatar
Victor SANH committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
    )
    parser.add_argument(
        "--model_name_or_path",
        type=str,
        required=True,
        help="Folder containing the model that was previously fine-pruned",
    )
    parser.add_argument(
        "--target_model_path",
        default=None,
        type=str,
        required=False,
        help="Folder containing the model that was previously fine-pruned",
    )

    args = parser.parse_args()

    main(args)