run_language_modeling.py 13.6 KB
Newer Older
1
#!/usr/bin/env python
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
17
"""
18
19
20
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, CTRL, BERT, RoBERTa, XLNet).
GPT, GPT-2 and CTRL are fine-tuned using a causal language modeling (CLM) loss. BERT and RoBERTa are fine-tuned
using a masked language modeling (MLM) loss. XLNet is fine-tuned using a permutation language modeling (PLM) loss.
21
"""
22
23
24


import logging
Julien Chaumond's avatar
Julien Chaumond committed
25
import math
26
import os
Julien Chaumond's avatar
Julien Chaumond committed
27
from dataclasses import dataclass, field
28
from glob import glob
Julien Chaumond's avatar
Julien Chaumond committed
29
from typing import Optional
30

31
32
from torch.utils.data import ConcatDataset

33
import transformers
34
from transformers import (
Julien Chaumond's avatar
Julien Chaumond committed
35
    CONFIG_MAPPING,
36
37
38
39
    MODEL_WITH_LM_HEAD_MAPPING,
    AutoConfig,
    AutoModelWithLMHead,
    AutoTokenizer,
Julien Chaumond's avatar
Julien Chaumond committed
40
    DataCollatorForLanguageModeling,
41
    DataCollatorForPermutationLanguageModeling,
42
    DataCollatorForWholeWordMask,
Julien Chaumond's avatar
Julien Chaumond committed
43
44
    HfArgumentParser,
    LineByLineTextDataset,
45
    LineByLineWithRefDataset,
46
    PreTrainedTokenizer,
Julien Chaumond's avatar
Julien Chaumond committed
47
48
49
50
    TextDataset,
    Trainer,
    TrainingArguments,
    set_seed,
51
)
52
from transformers.trainer_utils import is_main_process
53

54

55
logger = logging.getLogger(__name__)
56
57


58
59
MODEL_CONFIG_CLASSES = list(MODEL_WITH_LM_HEAD_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
60
61


Julien Chaumond's avatar
Julien Chaumond committed
62
63
64
65
66
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
    """
67

Julien Chaumond's avatar
Julien Chaumond committed
68
69
70
    model_name_or_path: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
71
72
73
74
            "help": (
                "The model checkpoint for weights initialization. Leave None if you want to train a model from"
                " scratch."
            )
75
76
        },
    )
Julien Chaumond's avatar
Julien Chaumond committed
77
78
79
    model_type: Optional[str] = field(
        default=None,
        metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
80
    )
Julien Chaumond's avatar
Julien Chaumond committed
81
82
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
83
    )
Julien Chaumond's avatar
Julien Chaumond committed
84
85
86
87
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
88
89
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
90
    )
91
92


Julien Chaumond's avatar
Julien Chaumond committed
93
94
95
96
97
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """
98

Julien Chaumond's avatar
Julien Chaumond committed
99
100
    train_data_file: Optional[str] = field(
        default=None, metadata={"help": "The input training data file (a text file)."}
101
    )
102
    train_data_files: Optional[str] = field(
sgugger's avatar
sgugger committed
103
104
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
105
106
107
108
            "help": (
                "The input training data files (multiple files in glob format). "
                "Very often splitting large files to smaller files can prevent tokenizer going out of memory"
            )
sgugger's avatar
sgugger committed
109
        },
110
    )
Julien Chaumond's avatar
Julien Chaumond committed
111
    eval_data_file: Optional[str] = field(
112
        default=None,
Julien Chaumond's avatar
Julien Chaumond committed
113
        metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
Julien Chaumond's avatar
Julien Chaumond committed
114
    )
115
    train_ref_file: Optional[str] = field(
116
        default=None,
117
118
119
120
121
        metadata={"help": "An optional input train ref data file for whole word mask in Chinese."},
    )
    eval_ref_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."},
122
    )
Julien Chaumond's avatar
Julien Chaumond committed
123
124
125
    line_by_line: bool = field(
        default=False,
        metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."},
126
127
    )

Julien Chaumond's avatar
Julien Chaumond committed
128
129
    mlm: bool = field(
        default=False, metadata={"help": "Train with masked-language modeling loss instead of language modeling."}
130
    )
131
    whole_word_mask: bool = field(default=False, metadata={"help": "Whether ot not to use whole word mask."})
Julien Chaumond's avatar
Julien Chaumond committed
132
133
    mlm_probability: float = field(
        default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}
134
    )
135
136
137
    plm_probability: float = field(
        default=1 / 6,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
138
139
140
141
            "help": (
                "Ratio of length of a span of masked tokens to surrounding context length for permutation language"
                " modeling."
            )
142
143
144
145
146
        },
    )
    max_span_length: int = field(
        default=5, metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."}
    )
147

Julien Chaumond's avatar
Julien Chaumond committed
148
    block_size: int = field(
149
        default=-1,
Julien Chaumond's avatar
Julien Chaumond committed
150
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
151
            "help": (
152
                "Optional input sequence length after tokenization. "
Sylvain Gugger's avatar
Sylvain Gugger committed
153
154
155
                "The training dataset will be truncated in block of this size for training."
                "Default to the model max input length for single sentence inputs (take into account special tokens)."
            )
Julien Chaumond's avatar
Julien Chaumond committed
156
        },
157
    )
Julien Chaumond's avatar
Julien Chaumond committed
158
159
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
160
161
162
    )


163
164
165
166
167
168
def get_dataset(
    args: DataTrainingArguments,
    tokenizer: PreTrainedTokenizer,
    evaluate: bool = False,
    cache_dir: Optional[str] = None,
):
169
    def _dataset(file_path, ref_path=None):
170
        if args.line_by_line:
171
            if ref_path is not None:
172
173
174
175
176
177
                if not args.whole_word_mask or not args.mlm:
                    raise ValueError("You need to set world whole masking and mlm to True for Chinese Whole Word Mask")
                return LineByLineWithRefDataset(
                    tokenizer=tokenizer,
                    file_path=file_path,
                    block_size=args.block_size,
178
                    ref_path=ref_path,
179
180
                )

181
182
183
184
185
186
187
188
189
190
191
            return LineByLineTextDataset(tokenizer=tokenizer, file_path=file_path, block_size=args.block_size)
        else:
            return TextDataset(
                tokenizer=tokenizer,
                file_path=file_path,
                block_size=args.block_size,
                overwrite_cache=args.overwrite_cache,
                cache_dir=cache_dir,
            )

    if evaluate:
192
        return _dataset(args.eval_data_file, args.eval_ref_file)
193
194
    elif args.train_data_files:
        return ConcatDataset([_dataset(f) for f in glob(args.train_data_files)])
Julien Chaumond's avatar
Julien Chaumond committed
195
    else:
196
        return _dataset(args.train_data_file, args.train_ref_file)
197

198

Julien Chaumond's avatar
Julien Chaumond committed
199
200
201
202
203
204
205
206
207
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    if data_args.eval_data_file is None and training_args.do_eval:
208
209
210
211
212
        raise ValueError(
            "Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file "
            "or remove the --do_eval argument."
        )
    if (
Julien Chaumond's avatar
Julien Chaumond committed
213
214
215
216
        os.path.exists(training_args.output_dir)
        and os.listdir(training_args.output_dir)
        and training_args.do_train
        and not training_args.overwrite_output_dir
217
218
    ):
        raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
219
220
            f"Output directory ({training_args.output_dir}) already exists and is not empty. Use"
            " --overwrite_output_dir to overcome."
221
        )
222
223

    # Setup logging
224
    logging.basicConfig(
225
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
226
        datefmt="%m/%d/%Y %H:%M:%S",
Julien Chaumond's avatar
Julien Chaumond committed
227
        level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
228
229
230
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
Julien Chaumond's avatar
Julien Chaumond committed
231
232
233
234
235
        training_args.local_rank,
        training_args.device,
        training_args.n_gpu,
        bool(training_args.local_rank != -1),
        training_args.fp16,
236
    )
237
238
239
240
241
    # Set the verbosity to info of the Transformers logger (on main process only):
    if is_main_process(training_args.local_rank):
        transformers.utils.logging.set_verbosity_info()
        transformers.utils.logging.enable_default_handler()
        transformers.utils.logging.enable_explicit_format()
Julien Chaumond's avatar
Julien Chaumond committed
242
    logger.info("Training/evaluation parameters %s", training_args)
243
244

    # Set seed
Julien Chaumond's avatar
Julien Chaumond committed
245
    set_seed(training_args.seed)
246
247

    # Load pretrained model and tokenizer
Julien Chaumond's avatar
Julien Chaumond committed
248
249
250
251
252
253
254
255
256
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.

    if model_args.config_name:
        config = AutoConfig.from_pretrained(model_args.config_name, cache_dir=model_args.cache_dir)
    elif model_args.model_name_or_path:
        config = AutoConfig.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir)
257
    else:
Julien Chaumond's avatar
Julien Chaumond committed
258
259
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning("You are instantiating a new config instance from scratch.")
260

Julien Chaumond's avatar
Julien Chaumond committed
261
262
263
264
    if model_args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, cache_dir=model_args.cache_dir)
    elif model_args.model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir)
265
    else:
266
        raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
267
268
            "You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another"
            " script, save it,and load it from here, using --tokenizer_name"
269
270
        )

Julien Chaumond's avatar
Julien Chaumond committed
271
    if model_args.model_name_or_path:
272
        model = AutoModelWithLMHead.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
273
274
            model_args.model_name_or_path,
            from_tf=bool(".ckpt" in model_args.model_name_or_path),
275
            config=config,
Julien Chaumond's avatar
Julien Chaumond committed
276
            cache_dir=model_args.cache_dir,
277
278
279
        )
    else:
        logger.info("Training new model from scratch")
280
        model = AutoModelWithLMHead.from_config(config)
281

Julien Chaumond's avatar
Julien Chaumond committed
282
    model.resize_token_embeddings(len(tokenizer))
283

Julien Chaumond's avatar
Julien Chaumond committed
284
285
    if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm:
        raise ValueError(
286
            "BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the "
287
            "--mlm flag (masked language modeling)."
Julien Chaumond's avatar
Julien Chaumond committed
288
        )
289

Julien Chaumond's avatar
Julien Chaumond committed
290
291
292
293
294
    if data_args.block_size <= 0:
        data_args.block_size = tokenizer.max_len
        # Our input block size will be the max possible for the model
    else:
        data_args.block_size = min(data_args.block_size, tokenizer.max_len)
295

Julien Chaumond's avatar
Julien Chaumond committed
296
    # Get datasets
297

298
299
300
301
302
303
304
305
    train_dataset = (
        get_dataset(data_args, tokenizer=tokenizer, cache_dir=model_args.cache_dir) if training_args.do_train else None
    )
    eval_dataset = (
        get_dataset(data_args, tokenizer=tokenizer, evaluate=True, cache_dir=model_args.cache_dir)
        if training_args.do_eval
        else None
    )
306
307
    if config.model_type == "xlnet":
        data_collator = DataCollatorForPermutationLanguageModeling(
Lysandre's avatar
Lysandre committed
308
309
310
            tokenizer=tokenizer,
            plm_probability=data_args.plm_probability,
            max_span_length=data_args.max_span_length,
311
312
        )
    else:
313
314
315
316
317
318
319
320
        if data_args.mlm and data_args.whole_word_mask:
            data_collator = DataCollatorForWholeWordMask(
                tokenizer=tokenizer, mlm_probability=data_args.mlm_probability
            )
        else:
            data_collator = DataCollatorForLanguageModeling(
                tokenizer=tokenizer, mlm=data_args.mlm, mlm_probability=data_args.mlm_probability
            )
321

Julien Chaumond's avatar
Julien Chaumond committed
322
323
324
325
326
327
328
329
330
    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        data_collator=data_collator,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
        prediction_loss_only=True,
    )
331

Julien Chaumond's avatar
Julien Chaumond committed
332
333
334
335
336
337
338
339
340
    # Training
    if training_args.do_train:
        model_path = (
            model_args.model_name_or_path
            if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path)
            else None
        )
        trainer.train(model_path=model_path)
        trainer.save_model()
341
342
343
344
        # For convenience, we also re-save the tokenizer to the same directory,
        # so that you can share your model easily on huggingface.co/models =)
        if trainer.is_world_master():
            tokenizer.save_pretrained(training_args.output_dir)
345

Julien Chaumond's avatar
Julien Chaumond committed
346
347
    # Evaluation
    results = {}
348
    if training_args.do_eval:
Julien Chaumond's avatar
Julien Chaumond committed
349
        logger.info("*** Evaluate ***")
350

Julien Chaumond's avatar
Julien Chaumond committed
351
        eval_output = trainer.evaluate()
352

353
        perplexity = math.exp(eval_output["eval_loss"])
Julien Chaumond's avatar
Julien Chaumond committed
354
        result = {"perplexity": perplexity}
355

Julien Chaumond's avatar
Julien Chaumond committed
356
        output_eval_file = os.path.join(training_args.output_dir, "eval_results_lm.txt")
357
358
359
360
361
362
        if trainer.is_world_master():
            with open(output_eval_file, "w") as writer:
                logger.info("***** Eval results *****")
                for key in sorted(result.keys()):
                    logger.info("  %s = %s", key, str(result[key]))
                    writer.write("%s = %s\n" % (key, str(result[key])))
363

Julien Chaumond's avatar
Julien Chaumond committed
364
        results.update(result)
365
366
367
368

    return results


369
370
371
372
373
def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


374
if __name__ == "__main__":
altsoph's avatar
altsoph committed
375
    main()