test_tokenization_t5.py 6.72 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 Google T5 Authors and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16
17

import os
18
import unittest
thomwolf's avatar
thomwolf committed
19

20
21
from transformers import BatchEncoding
from transformers.testing_utils import _torch_available
22
from transformers.tokenization_t5 import T5Tokenizer
23
from transformers.tokenization_xlnet import SPIECE_UNDERLINE
thomwolf's avatar
thomwolf committed
24

25
from .test_tokenization_common import TokenizerTesterMixin
thomwolf's avatar
thomwolf committed
26

Aymeric Augustin's avatar
Aymeric Augustin committed
27

28
29
SAMPLE_VOCAB = os.path.join(os.path.dirname(os.path.abspath(__file__)), "fixtures/test_sentencepiece.model")

30
31
FRAMEWORK = "pt" if _torch_available else "tf"

thomwolf's avatar
thomwolf committed
32

33
class T5TokenizationTest(TokenizerTesterMixin, unittest.TestCase):
thomwolf's avatar
thomwolf committed
34
35
36
37

    tokenizer_class = T5Tokenizer

    def setUp(self):
Julien Chaumond's avatar
Julien Chaumond committed
38
        super().setUp()
thomwolf's avatar
thomwolf committed
39
40

        # We have a SentencePiece fixture for testing
41
        tokenizer = T5Tokenizer(SAMPLE_VOCAB)
thomwolf's avatar
thomwolf committed
42
43
44
        tokenizer.save_pretrained(self.tmpdirname)

    def test_full_tokenizer(self):
45
        tokenizer = T5Tokenizer(SAMPLE_VOCAB)
thomwolf's avatar
thomwolf committed
46

47
48
        tokens = tokenizer.tokenize("This is a test")
        self.assertListEqual(tokens, ["鈻乀his", "鈻乮s", "鈻乤", "鈻乼", "est"])
thomwolf's avatar
thomwolf committed
49

50
        self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [285, 46, 10, 170, 382])
thomwolf's avatar
thomwolf committed
51

52
        tokens = tokenizer.tokenize("I was born in 92000, and this is fals茅.")
thomwolf's avatar
thomwolf committed
53
        self.assertListEqual(
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
            tokens,
            [
                SPIECE_UNDERLINE + "I",
                SPIECE_UNDERLINE + "was",
                SPIECE_UNDERLINE + "b",
                "or",
                "n",
                SPIECE_UNDERLINE + "in",
                SPIECE_UNDERLINE + "",
                "9",
                "2",
                "0",
                "0",
                "0",
                ",",
                SPIECE_UNDERLINE + "and",
                SPIECE_UNDERLINE + "this",
                SPIECE_UNDERLINE + "is",
                SPIECE_UNDERLINE + "f",
                "al",
                "s",
                "茅",
                ".",
            ],
        )
        ids = tokenizer.convert_tokens_to_ids(tokens)
        self.assertListEqual(ids, [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4])
thomwolf's avatar
thomwolf committed
81
82

        back_tokens = tokenizer.convert_ids_to_tokens(ids)
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
        self.assertListEqual(
            back_tokens,
            [
                SPIECE_UNDERLINE + "I",
                SPIECE_UNDERLINE + "was",
                SPIECE_UNDERLINE + "b",
                "or",
                "n",
                SPIECE_UNDERLINE + "in",
                SPIECE_UNDERLINE + "",
                "<unk>",
                "2",
                "0",
                "0",
                "0",
                ",",
                SPIECE_UNDERLINE + "and",
                SPIECE_UNDERLINE + "this",
                SPIECE_UNDERLINE + "is",
                SPIECE_UNDERLINE + "f",
                "al",
                "s",
                "<unk>",
                ".",
            ],
        )
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

    def test_prepare_seq2seq_batch(self):
        tokenizer = T5Tokenizer.from_pretrained("t5-small")
        src_text = ["A long paragraph for summrization.", "Another paragraph for summrization."]
        tgt_text = [
            "Summary of the text.",
            "Another summary.",
        ]
        expected_src_tokens = [71, 307, 8986, 21, 4505, 51, 52, 1707, 5]
        batch = tokenizer.prepare_seq2seq_batch(
            src_text, tgt_texts=tgt_text, max_length=len(expected_src_tokens), return_tensors=FRAMEWORK
        )
        self.assertIsInstance(batch, BatchEncoding)

        self.assertEqual((2, 9), batch.input_ids.shape)
        self.assertEqual((2, 9), batch.attention_mask.shape)
        result = list(batch.input_ids.numpy()[0])
        self.assertListEqual(expected_src_tokens, result)
        # Test that special tokens are reset
        self.assertEqual(tokenizer.prefix_tokens, [])

    def test_empty_target_text(self):
        tokenizer = T5Tokenizer.from_pretrained("t5-small")
        src_text = ["A long paragraph for summrization.", "Another paragraph for summrization."]
        batch = tokenizer.prepare_seq2seq_batch(src_text, return_tensors=FRAMEWORK)
        # check if input_ids are returned and no decoder_input_ids
        self.assertIn("input_ids", batch)
        self.assertIn("attention_mask", batch)
        self.assertNotIn("decoder_input_ids", batch)
        self.assertNotIn("decoder_attention_mask", batch)

    def test_max_target_length(self):
        tokenizer = T5Tokenizer.from_pretrained("t5-small")
        src_text = ["A long paragraph for summrization.", "Another paragraph for summrization."]
        tgt_text = [
            "Summary of the text.",
            "Another summary.",
        ]
        batch = tokenizer.prepare_seq2seq_batch(
            src_text, tgt_texts=tgt_text, max_target_length=32, padding="max_length", return_tensors=FRAMEWORK
        )
        self.assertEqual(32, batch["decoder_input_ids"].shape[1])
        self.assertEqual(32, batch["decoder_attention_mask"].shape[1])

        # test None max_target_length
        batch = tokenizer.prepare_seq2seq_batch(
            src_text, tgt_texts=tgt_text, max_length=32, padding="max_length", return_tensors=FRAMEWORK
        )
        self.assertEqual(32, batch["decoder_input_ids"].shape[1])
        self.assertEqual(32, batch["decoder_attention_mask"].shape[1])

    def test_outputs_not_longer_than_maxlen(self):
        tokenizer = T5Tokenizer.from_pretrained("t5-small")

        batch = tokenizer.prepare_seq2seq_batch(
            ["I am a small frog" * 1000, "I am a small frog"], return_tensors=FRAMEWORK
        )
        self.assertIsInstance(batch, BatchEncoding)
        self.assertEqual(batch.input_ids.shape, (2, 512))

    def test_eos_in_input(self):
        tokenizer = T5Tokenizer.from_pretrained("t5-small")
        src_text = ["A long paragraph for summrization. </s>"]
        tgt_text = ["Summary of the text. </s>"]
        expected_src_tokens = [71, 307, 8986, 21, 4505, 51, 52, 1707, 5, 1]
        expected_tgt_tokens = [0, 20698, 13, 8, 1499, 5, 1]

        batch = tokenizer.prepare_seq2seq_batch(src_text, tgt_texts=tgt_text, return_tensors=FRAMEWORK)

        src_ids = list(batch.input_ids.numpy()[0])
        tgt_ids = list(batch.decoder_input_ids.numpy()[0])

        self.assertEqual(expected_src_tokens, src_ids)
        self.assertEqual(expected_tgt_tokens, tgt_ids)