seq2seq_training_args.py 2.62 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
16
17
18
19
import logging
from dataclasses import dataclass, field
from typing import Optional

from seq2seq_trainer import arg_to_scheduler
20

21
22
23
24
25
26
27
28
29
30
31
32
33
from transformers import TrainingArguments


logger = logging.getLogger(__name__)


@dataclass
class Seq2SeqTrainingArguments(TrainingArguments):
    """
    Parameters:
        label_smoothing (:obj:`float`, `optional`, defaults to 0):
            The label smoothing epsilon to apply (if not zero).
        sortish_sampler (:obj:`bool`, `optional`, defaults to :obj:`False`):
Susnato Dhar's avatar
Susnato Dhar committed
34
            Whether to SortishSamler or not. It sorts the inputs according to lengths in-order to minimizing the padding size.
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
        predict_with_generate (:obj:`bool`, `optional`, defaults to :obj:`False`):
            Whether to use generate to calculate generative metrics (ROUGE, BLEU).
    """

    label_smoothing: Optional[float] = field(
        default=0.0, metadata={"help": "The label smoothing epsilon to apply (if not zero)."}
    )
    sortish_sampler: bool = field(default=False, metadata={"help": "Whether to SortishSamler or not."})
    predict_with_generate: bool = field(
        default=False, metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."}
    )
    adafactor: bool = field(default=False, metadata={"help": "whether to use adafactor"})
    encoder_layerdrop: Optional[float] = field(
        default=None, metadata={"help": "Encoder layer dropout probability. Goes into model.config."}
    )
    decoder_layerdrop: Optional[float] = field(
        default=None, metadata={"help": "Decoder layer dropout probability. Goes into model.config."}
    )
    dropout: Optional[float] = field(default=None, metadata={"help": "Dropout probability. Goes into model.config."})
    attention_dropout: Optional[float] = field(
        default=None, metadata={"help": "Attention dropout probability. Goes into model.config."}
    )
    lr_scheduler: Optional[str] = field(
        default="linear",
        metadata={"help": f"Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys())}"},
    )