test_pipelines_feature_extraction.py 6.05 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
16
import unittest

17
18
from transformers import MODEL_MAPPING, TF_MODEL_MAPPING, FeatureExtractionPipeline, LxmertConfig, pipeline
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch
19

20
from .test_pipelines_common import PipelineTestCaseMeta
21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

@is_pipeline_test
class FeatureExtractionPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
    model_mapping = MODEL_MAPPING
    tf_model_mapping = TF_MODEL_MAPPING

    @require_torch
    def test_small_model_pt(self):
        feature_extractor = pipeline(
            task="feature-extraction", model="hf-internal-testing/tiny-random-distilbert", framework="pt"
        )
        outputs = feature_extractor("This is a test")
        self.assertEqual(
            nested_simplify(outputs),
            [[[-0.454, 0.966, 0.619, 0.262, 0.669, -0.661, -0.066, -0.513, -0.768, -0.177, 1.771, -0.665, -0.649, 0.219, 0.236, -0.375, 1.155, -1.07, 0.208, -0.799, 1.065, -1.223, 0.554, 1.274, 0.458, 2.292, -0.481, -0.928, -2.469, -1.692, 0.182, 1.06], [-0.187, -1.277, 0.849, -0.439, -0.967, -1.347, 1.063, 0.469, 1.086, -1.253, 0.349, 0.057, 1.031, -1.903, -0.432, -1.377, 0.379, 0.733, -1.043, 1.307, 0.865, 0.229, 1.373, 1.671, -0.285, 0.599, -1.418, -1.179, -0.369, 1.039, -0.705, 1.082], [-1.735, 1.102, 0.398, -0.245, 1.452, 0.46, -1.734, -0.746, 1.831, 0.562, 1.464, -0.342, -0.619, -0.455, 0.127, -1.209, -0.686, -0.395, -0.316, 2.467, -0.379, 0.328, 0.639, 0.4, -1.097, -0.096, 0.397, -0.806, -1.621, 1.127, -0.345, 0.074], [0.296, -0.638, 1.938, -0.151, -1.19, 1.445, 1.318, 0.711, -0.125, 0.127, -2.179, 0.481, -1.019, 1.178, 0.318, 1.858, -1.646, 0.185, -0.072, -0.979, 0.82, -1.374, 0.836, -1.019, 0.043, -0.156, -0.095, 0.641, -0.195, -0.076, -1.554, 0.275], [-0.266, 0.971, 0.745, -0.37, 1.42, -0.5, -0.53, 0.061, 1.311, -0.1, 1.796, 0.53, -0.739, -0.325, 0.28, -1.72, 0.382, -1.118, 0.442, 1.84, -2.497, 1.003, -0.788, -0.224, -0.604, -1.259, -0.475, 1.18, -1.356, 0.695, 0.201, 0.016], [-0.618, -1.495, -0.67, -0.106, -1.265, -0.51, -1.752, 1.018, 0.674, 0.181, 0.297, 0.479, -0.185, 0.081, -2.44, -0.239, 1.081, -1.38, 0.679, 0.878, 1.336, -1.347, 0.969, -0.847, 0.293, 0.476, 1.647, -0.641, 0.66, 1.236, 0.761, 0.751]]])  # fmt: skip

    @require_tf
    def test_small_model_tf(self):
        feature_extractor = pipeline(
            task="feature-extraction", model="hf-internal-testing/tiny-random-distilbert", framework="tf"
        )
        outputs = feature_extractor("This is a test")
        self.assertEqual(
            nested_simplify(outputs),
            [[[-0.454, 0.966, 0.619, 0.262, 0.669, -0.661, -0.066, -0.513, -0.768, -0.177, 1.771, -0.665, -0.649, 0.219, 0.236, -0.375, 1.155, -1.07, 0.208, -0.799, 1.065, -1.223, 0.554, 1.274, 0.458, 2.292, -0.481, -0.928, -2.469, -1.692, 0.182, 1.06], [-0.187, -1.277, 0.849, -0.439, -0.967, -1.347, 1.063, 0.469, 1.086, -1.253, 0.349, 0.057, 1.031, -1.903, -0.432, -1.377, 0.379, 0.733, -1.043, 1.307, 0.865, 0.229, 1.373, 1.671, -0.285, 0.599, -1.418, -1.179, -0.369, 1.039, -0.705, 1.082], [-1.735, 1.102, 0.398, -0.245, 1.452, 0.46, -1.734, -0.746, 1.831, 0.562, 1.464, -0.342, -0.619, -0.455, 0.127, -1.209, -0.686, -0.395, -0.316, 2.467, -0.379, 0.328, 0.639, 0.4, -1.097, -0.096, 0.397, -0.806, -1.621, 1.127, -0.345, 0.074], [0.296, -0.638, 1.938, -0.151, -1.19, 1.445, 1.318, 0.711, -0.125, 0.127, -2.179, 0.481, -1.019, 1.178, 0.318, 1.858, -1.646, 0.185, -0.072, -0.979, 0.82, -1.374, 0.836, -1.019, 0.043, -0.156, -0.095, 0.641, -0.195, -0.076, -1.554, 0.275], [-0.266, 0.971, 0.745, -0.37, 1.42, -0.5, -0.53, 0.061, 1.311, -0.1, 1.796, 0.53, -0.739, -0.325, 0.28, -1.72, 0.382, -1.118, 0.442, 1.84, -2.497, 1.003, -0.788, -0.224, -0.604, -1.259, -0.475, 1.18, -1.356, 0.695, 0.201, 0.016], [-0.618, -1.495, -0.67, -0.106, -1.265, -0.51, -1.752, 1.018, 0.674, 0.181, 0.297, 0.479, -0.185, 0.081, -2.44, -0.239, 1.081, -1.38, 0.679, 0.878, 1.336, -1.347, 0.969, -0.847, 0.293, 0.476, 1.647, -0.641, 0.66, 1.236, 0.761, 0.751]]])  # fmt: skip

    def get_shape(self, input_, shape=None):
        if shape is None:
            shape = []
        if isinstance(input_, list):
            subshapes = [self.get_shape(in_, shape) for in_ in input_]
            if all(s == 0 for s in subshapes):
                shape.append(len(input_))
            else:
                subshape = subshapes[0]
                shape = [len(input_), *subshape]
        elif isinstance(input_, float):
            return 0
        else:
            raise ValueError("We expect lists of floats, nothing else")
        return shape

64
    def run_pipeline_test(self, model, tokenizer, feature_extractor):
65
66
67
68
69
        if isinstance(model.config, LxmertConfig):
            # This is an bimodal model, we need to find a more consistent way
            # to switch on those models.
            return

70
71
72
        feature_extractor = FeatureExtractionPipeline(
            model=model, tokenizer=tokenizer, feature_extractor=feature_extractor
        )
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
        if feature_extractor.model.config.is_encoder_decoder:
            # encoder_decoder models are trickier for this pipeline.
            # Do we want encoder + decoder inputs to get some featues?
            # Do we want encoder only features ?
            # For now ignore those.
            return

        outputs = feature_extractor("This is a test")

        shape = self.get_shape(outputs)
        self.assertEqual(shape[0], 1)

        outputs = feature_extractor(["This is a test", "Another test"])
        shape = self.get_shape(outputs)
        self.assertEqual(shape[0], 2)