run_summarization_flax.py 41.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for summarization.
"""
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.

Suraj Patil's avatar
Suraj Patil committed
21
import json
22
import logging
23
import math
24
25
26
import os
import sys
import time
27
28
from dataclasses import asdict, dataclass, field
from enum import Enum
29
30
31
32
33
from functools import partial
from pathlib import Path
from typing import Callable, Optional

import datasets
34
import evaluate
35
36
import jax
import jax.numpy as jnp
37
38
import nltk  # Here to have a nice missing dependency error message early on
import numpy as np
39
import optax
40
from datasets import Dataset, load_dataset
41
42
from filelock import FileLock
from flax import jax_utils, traverse_util
43
from flax.jax_utils import pad_shard_unpad, unreplicate
44
45
from flax.training import train_state
from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key
46
from huggingface_hub import Repository, create_repo
47
48
49
from tqdm import tqdm

import transformers
50
51
52
53
54
55
56
57
58
from transformers import (
    CONFIG_MAPPING,
    FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
    AutoConfig,
    AutoTokenizer,
    FlaxAutoModelForSeq2SeqLM,
    HfArgumentParser,
    is_tensorboard_available,
)
59
from transformers.utils import get_full_repo_name, is_offline_mode, send_example_telemetry
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78


logger = logging.getLogger(__name__)

try:
    nltk.data.find("tokenizers/punkt")
except (LookupError, OSError):
    if is_offline_mode():
        raise LookupError(
            "Offline mode: run this script without TRANSFORMERS_OFFLINE first to download nltk data files"
        )
    with FileLock(".lock") as lock:
        nltk.download("punkt", quiet=True)


MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)


79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
@dataclass
class TrainingArguments:
    output_dir: str = field(
        metadata={"help": "The output directory where the model predictions and checkpoints will be written."},
    )
    overwrite_output_dir: bool = field(
        default=False,
        metadata={
            "help": (
                "Overwrite the content of the output directory. "
                "Use this to continue training if output_dir points to a checkpoint directory."
            )
        },
    )
    do_train: bool = field(default=False, metadata={"help": "Whether to run training."})
    do_eval: bool = field(default=False, metadata={"help": "Whether to run eval on the dev set."})
    do_predict: bool = field(default=False, metadata={"help": "Whether to run predictions on the test set."})
    per_device_train_batch_size: int = field(
        default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for training."}
    )
    per_device_eval_batch_size: int = field(
        default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for evaluation."}
    )
    learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for AdamW."})
    weight_decay: float = field(default=0.0, metadata={"help": "Weight decay for AdamW if we apply some."})
    adam_beta1: float = field(default=0.9, metadata={"help": "Beta1 for AdamW optimizer"})
    adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for AdamW optimizer"})
    adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."})
    label_smoothing_factor: float = field(
        default=0.0, metadata={"help": "The label smoothing epsilon to apply (zero means no label smoothing)."}
    )
    adafactor: bool = field(default=False, metadata={"help": "Whether or not to replace AdamW by Adafactor."})
    num_train_epochs: float = field(default=3.0, metadata={"help": "Total number of training epochs to perform."})
    warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."})
    logging_steps: int = field(default=500, metadata={"help": "Log every X updates steps."})
    save_steps: int = field(default=500, metadata={"help": "Save checkpoint every X updates steps."})
    eval_steps: int = field(default=None, metadata={"help": "Run an evaluation every X steps."})
    seed: int = field(default=42, metadata={"help": "Random seed that will be set at the beginning of training."})
    push_to_hub: bool = field(
        default=False, metadata={"help": "Whether or not to upload the trained model to the model hub after training."}
    )
    hub_model_id: str = field(
        default=None, metadata={"help": "The name of the repository to keep in sync with the local `output_dir`."}
    )
    hub_token: str = field(default=None, metadata={"help": "The token to use to push to the Model Hub."})
Karim Foda's avatar
Karim Foda committed
124
125
126
127
128
129
    gradient_checkpointing: bool = field(
        default=False,
        metadata={
            "help": "If True, use gradient checkpointing to save memory at the expense of slower backward pass."
        },
    )
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

    def __post_init__(self):
        if self.output_dir is not None:
            self.output_dir = os.path.expanduser(self.output_dir)

    def to_dict(self):
        """
        Serializes this instance while replace `Enum` by their values (for JSON serialization support). It obfuscates
        the token values by removing their value.
        """
        d = asdict(self)
        for k, v in d.items():
            if isinstance(v, Enum):
                d[k] = v.value
            if isinstance(v, list) and len(v) > 0 and isinstance(v[0], Enum):
                d[k] = [x.value for x in v]
            if k.endswith("_token"):
                d[k] = f"<{k.upper()}>"
        return d


151
152
153
154
155
156
157
158
159
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
    """

    model_name_or_path: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
160
161
162
            "help": (
                "The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."
            )
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
        },
    )
    model_type: Optional[str] = field(
        default=None,
        metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
    dtype: Optional[str] = field(
        default="float32",
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
185
186
187
188
            "help": (
                "Floating-point format in which the model weights should be initialized and trained. Choose one of"
                " `[float32, float16, bfloat16]`."
            )
189
190
        },
    )
191
192
193
    use_auth_token: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
194
            "help": (
195
                "Will use the token generated when running `huggingface-cli login` (necessary to use this script "
Sylvain Gugger's avatar
Sylvain Gugger committed
196
197
                "with private models)."
            )
198
199
        },
    )
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    text_column: Optional[str] = field(
        default=None,
        metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."},
    )
    summary_column: Optional[str] = field(
        default=None,
        metadata={"help": "The name of the column in the datasets containing the summaries (for summarization)."},
    )
    train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
    validation_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
    )
Bhadresh Savani's avatar
Bhadresh Savani committed
227
228
229
230
    test_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input predict data file to do prediction on (a text file)."},
    )
231
232
233
    max_source_length: Optional[int] = field(
        default=1024,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
234
235
236
237
            "help": (
                "The maximum total input sequence length after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
238
239
240
241
242
        },
    )
    max_target_length: Optional[int] = field(
        default=128,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
243
244
245
246
            "help": (
                "The maximum total sequence length for target text after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
247
248
249
250
251
        },
    )
    val_max_target_length: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
252
253
254
255
256
257
            "help": (
                "The maximum total sequence length for validation target text after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`."
                "This argument is also used to override the `max_length` param of `model.generate`, which is used "
                "during evaluation."
            )
258
259
260
261
262
        },
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
263
264
265
266
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
267
268
269
270
271
        },
    )
    max_eval_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
272
273
274
275
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
276
277
278
279
280
        },
    )
    max_predict_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
281
282
283
284
            "help": (
                "For debugging purposes or quicker training, truncate the number of prediction examples to this "
                "value if set."
            )
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
        },
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    source_prefix: Optional[str] = field(
        default=None, metadata={"help": "A prefix to add before every source text (useful for T5 models)."}
    )
    predict_with_generate: bool = field(
        default=False, metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."}
    )
    num_beams: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
300
301
302
303
            "help": (
                "Number of beams to use for evaluation. This argument will be passed to `model.generate`, "
                "which is used during evaluation."
            )
304
305
306
307
308
309
310
        },
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )

    def __post_init__(self):
311
312
313
314
315
316
317
        if (
            self.dataset_name is None
            and self.train_file is None
            and self.validation_file is None
            and self.test_file is None
        ):
            raise ValueError("Need either a dataset name or a training, validation, or test file.")
318
319
320
321
322
323
324
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
325
326
327
            if self.test_file is not None:
                extension = self.test_file.split(".")[-1]
                assert extension in ["csv", "json"], "`test_file` should be a csv or a json file."
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
        if self.val_max_target_length is None:
            self.val_max_target_length = self.max_target_length


summarization_name_mapping = {
    "amazon_reviews_multi": ("review_body", "review_title"),
    "big_patent": ("description", "abstract"),
    "cnn_dailymail": ("article", "highlights"),
    "orange_sum": ("text", "summary"),
    "pn_summary": ("article", "summary"),
    "psc": ("extract_text", "summary_text"),
    "samsum": ("dialogue", "summary"),
    "thaisum": ("body", "summary"),
    "xglue": ("news_body", "news_title"),
    "xsum": ("document", "summary"),
    "wiki_summary": ("article", "highlights"),
}


class TrainState(train_state.TrainState):
    dropout_rng: jnp.ndarray

    def replicate(self):
        return jax_utils.replicate(self).replace(dropout_rng=shard_prng_key(self.dropout_rng))


354
def data_loader(rng: jax.random.PRNGKey, dataset: Dataset, batch_size: int, shuffle: bool = False, drop_last=True):
355
    """
356
357
    Returns batches of size `batch_size` from `dataset`. If `drop_last` is set to `False`, the final batch may be incomplete,
    and range in size from 1 to `batch_size`. Shuffle batches if `shuffle` is `True`.
358
359
360
    """
    if shuffle:
        batch_idx = jax.random.permutation(rng, len(dataset))
361
        batch_idx = np.asarray(batch_idx)
362
    else:
363
        batch_idx = np.arange(len(dataset))
364

365
366
367
368
369
370
371
    if drop_last:
        steps_per_epoch = len(dataset) // batch_size
        batch_idx = batch_idx[: steps_per_epoch * batch_size]  # Skip incomplete batch.
        batch_idx = batch_idx.reshape((steps_per_epoch, batch_size))
    else:
        steps_per_epoch = math.ceil(len(dataset) / batch_size)
        batch_idx = np.array_split(batch_idx, steps_per_epoch)
372
373
374

    for idx in batch_idx:
        batch = dataset[idx]
375
        batch = {k: np.array(v) for k, v in batch.items()}
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419

        yield batch


def write_metric(summary_writer, train_metrics, eval_metrics, train_time, step):
    summary_writer.scalar("train_time", train_time, step)

    train_metrics = get_metrics(train_metrics)
    for key, vals in train_metrics.items():
        tag = f"train_{key}"
        for i, val in enumerate(vals):
            summary_writer.scalar(tag, val, step - len(vals) + i + 1)

    for metric_name, value in eval_metrics.items():
        summary_writer.scalar(f"eval_{metric_name}", value, step)


def create_learning_rate_fn(
    train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float
) -> Callable[[int], jnp.array]:
    """Returns a linear warmup, linear_decay learning rate function."""
    steps_per_epoch = train_ds_size // train_batch_size
    num_train_steps = steps_per_epoch * num_train_epochs
    warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps)
    decay_fn = optax.linear_schedule(
        init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps
    )
    schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps])
    return schedule_fn


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

420
421
422
423
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_summarization", model_args, data_args, framework="flax")

424
425
426
427
428
429
430
431
432
433
434
435
436
    if (
        os.path.exists(training_args.output_dir)
        and os.listdir(training_args.output_dir)
        and training_args.do_train
        and not training_args.overwrite_output_dir
    ):
        raise ValueError(
            f"Output directory ({training_args.output_dir}) already exists and is not empty."
            "Use --overwrite_output_dir to overcome."
        )

    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
437
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    # Setup logging, we only want one process per machine to log things on the screen.
    logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
    if jax.process_index() == 0:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()

    # Set the verbosity to info of the Transformers logger (on main process only):
    logger.info(f"Training/evaluation parameters {training_args}")

453
454
455
456
457
458
459
460
    # Handle the repository creation
    if training_args.push_to_hub:
        if training_args.hub_model_id is None:
            repo_name = get_full_repo_name(
                Path(training_args.output_dir).absolute().name, token=training_args.hub_token
            )
        else:
            repo_name = training_args.hub_model_id
461
462
        create_repo(repo_name, exist_ok=True, token=training_args.hub_token)
        repo = Repository(training_args.output_dir, clone_from=repo_name, token=training_args.hub_token)
463

464
465
466
467
468
469
470
471
472
473
    # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files this script will use the first column for the full texts and the second column for the
    # summaries (unless you specify column names for this with the `text_column` and `summary_column` arguments).
    #
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        dataset = load_dataset(
474
475
476
477
478
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
            keep_in_memory=False,
            use_auth_token=True if model_args.use_auth_token else None,
479
480
481
482
483
484
485
486
487
488
489
490
        )
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
            extension = data_args.train_file.split(".")[-1]
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
            extension = data_args.validation_file.split(".")[-1]
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
            extension = data_args.test_file.split(".")[-1]
491
492
493
494
495
496
        dataset = load_dataset(
            extension,
            data_files=data_files,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
        )
497
498
499
500
501
502
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer

    if model_args.config_name:
503
504
505
506
507
        config = AutoConfig.from_pretrained(
            model_args.config_name,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
        )
508
    elif model_args.model_name_or_path:
509
510
511
512
513
        config = AutoConfig.from_pretrained(
            model_args.model_name_or_path,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
        )
514
515
516
517
518
519
    else:
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning("You are instantiating a new config instance from scratch.")

    if model_args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(
520
521
522
523
            model_args.tokenizer_name,
            cache_dir=model_args.cache_dir,
            use_fast=model_args.use_fast_tokenizer,
            use_auth_token=True if model_args.use_auth_token else None,
524
525
526
        )
    elif model_args.model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(
527
528
529
530
            model_args.model_name_or_path,
            cache_dir=model_args.cache_dir,
            use_fast=model_args.use_fast_tokenizer,
            use_auth_token=True if model_args.use_auth_token else None,
531
532
533
534
535
536
537
538
539
        )
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if model_args.model_name_or_path:
        model = FlaxAutoModelForSeq2SeqLM.from_pretrained(
540
541
542
543
544
            model_args.model_name_or_path,
            config=config,
            seed=training_args.seed,
            dtype=getattr(jnp, model_args.dtype),
            use_auth_token=True if model_args.use_auth_token else None,
545
546
547
        )
    else:
        model = FlaxAutoModelForSeq2SeqLM.from_config(
548
549
550
            config,
            seed=training_args.seed,
            dtype=getattr(jnp, model_args.dtype),
551
552
        )

Karim Foda's avatar
Karim Foda committed
553
554
555
    if training_args.gradient_checkpointing:
        model.enable_gradient_checkpointing()

556
557
558
559
560
561
562
563
    if model.config.decoder_start_token_id is None:
        raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")

    prefix = data_args.source_prefix if data_args.source_prefix is not None else ""

    # Preprocessing the datasets.
    # We need to tokenize inputs and targets.
    if training_args.do_train:
564
565
        if "train" not in dataset:
            raise ValueError("--do_train requires a train dataset")
566
567
        column_names = dataset["train"].column_names
    elif training_args.do_eval:
568
569
        if "validation" not in dataset:
            raise ValueError("--do_eval requires a validation dataset")
570
571
        column_names = dataset["validation"].column_names
    elif training_args.do_predict:
572
573
        if "test" not in dataset:
            raise ValueError("--do_predict requires a test dataset")
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
        column_names = dataset["test"].column_names
    else:
        logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")
        return

    # Get the column names for input/target.
    dataset_columns = summarization_name_mapping.get(data_args.dataset_name, None)
    if data_args.text_column is None:
        text_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
    else:
        text_column = data_args.text_column
        if text_column not in column_names:
            raise ValueError(
                f"--text_column' value '{data_args.text_column}' needs to be one of: {', '.join(column_names)}"
            )
    if data_args.summary_column is None:
        summary_column = dataset_columns[1] if dataset_columns is not None else column_names[1]
    else:
        summary_column = data_args.summary_column
        if summary_column not in column_names:
            raise ValueError(
                f"--summary_column' value '{data_args.summary_column}' needs to be one of: {', '.join(column_names)}"
            )

    # Temporarily set max_target_length for training.
    max_target_length = data_args.max_target_length

    # In Flax, for seq2seq models we need to pass `decoder_input_ids`
    # as the Flax models don't accept `labels`, we need to prepare the decoder_input_ids here
    # for that dynamically import the `shift_tokens_right` function from the model file
    model_module = __import__(model.__module__, fromlist=["shift_tokens_tight"])
    shift_tokens_right_fn = getattr(model_module, "shift_tokens_right")

    # Setting padding="max_length" as we need fixed length inputs for jitted functions
    def preprocess_function(examples):
        inputs = examples[text_column]
        targets = examples[summary_column]
        inputs = [prefix + inp for inp in inputs]
        model_inputs = tokenizer(
            inputs, max_length=data_args.max_source_length, padding="max_length", truncation=True, return_tensors="np"
        )

        # Setup the tokenizer for targets
617
618
619
620
621
622
623
        labels = tokenizer(
            text_target=targets,
            max_length=max_target_length,
            padding="max_length",
            truncation=True,
            return_tensors="np",
        )
624
625
626

        model_inputs["labels"] = labels["input_ids"]
        decoder_input_ids = shift_tokens_right_fn(
627
            labels["input_ids"], config.pad_token_id, config.decoder_start_token_id
628
629
630
631
632
633
634
635
636
637
638
        )
        model_inputs["decoder_input_ids"] = np.asarray(decoder_input_ids)

        # We need decoder_attention_mask so we can ignore pad tokens from loss
        model_inputs["decoder_attention_mask"] = labels["attention_mask"]

        return model_inputs

    if training_args.do_train:
        train_dataset = dataset["train"]
        if data_args.max_train_samples is not None:
639
640
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
641
642
643
644
645
646
647
648
649
650
651
652
653
        train_dataset = train_dataset.map(
            preprocess_function,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not data_args.overwrite_cache,
            desc="Running tokenizer on train dataset",
        )

    if training_args.do_eval:
        max_target_length = data_args.val_max_target_length
        eval_dataset = dataset["validation"]
        if data_args.max_eval_samples is not None:
654
655
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
656
657
658
659
660
661
662
663
664
665
666
667
668
        eval_dataset = eval_dataset.map(
            preprocess_function,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not data_args.overwrite_cache,
            desc="Running tokenizer on validation dataset",
        )

    if training_args.do_predict:
        max_target_length = data_args.val_max_target_length
        predict_dataset = dataset["test"]
        if data_args.max_predict_samples is not None:
669
670
            max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
            predict_dataset = predict_dataset.select(range(max_predict_samples))
671
672
673
674
675
676
677
678
679
680
        predict_dataset = predict_dataset.map(
            preprocess_function,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not data_args.overwrite_cache,
            desc="Running tokenizer on prediction dataset",
        )

    # Metric
681
    metric = evaluate.load("rouge")
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700

    def postprocess_text(preds, labels):
        preds = [pred.strip() for pred in preds]
        labels = [label.strip() for label in labels]

        # rougeLSum expects newline after each sentence
        preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds]
        labels = ["\n".join(nltk.sent_tokenize(label)) for label in labels]

        return preds, labels

    def compute_metrics(preds, labels):
        decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
        decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)

        # Some simple post-processing
        decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)

        result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
701
        result = {k: round(v * 100, 4) for k, v in result.items()}
702
703
704
705
706
707
708
709
710
711
        prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
        result["gen_len"] = np.mean(prediction_lens)
        return result

    # Enable tensorboard only on the master node
    has_tensorboard = is_tensorboard_available()
    if has_tensorboard and jax.process_index() == 0:
        try:
            from flax.metrics.tensorboard import SummaryWriter

712
            summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir))
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
        except ImportError as ie:
            has_tensorboard = False
            logger.warning(
                f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
            )
    else:
        logger.warning(
            "Unable to display metrics through TensorBoard because the package is not installed: "
            "Please run pip install tensorboard to enable."
        )

    # Initialize our training
    rng = jax.random.PRNGKey(training_args.seed)
    rng, dropout_rng = jax.random.split(rng)

    # Store some constant
    num_epochs = int(training_args.num_train_epochs)
    train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count()
731
732
    per_device_eval_batch_size = int(training_args.per_device_eval_batch_size)
    eval_batch_size = per_device_eval_batch_size * jax.device_count()
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
    steps_per_epoch = len(train_dataset) // train_batch_size
    total_train_steps = steps_per_epoch * num_epochs

    # Create learning rate schedule
    linear_decay_lr_schedule_fn = create_learning_rate_fn(
        len(train_dataset),
        train_batch_size,
        training_args.num_train_epochs,
        training_args.warmup_steps,
        training_args.learning_rate,
    )

    # We use Optax's "masking" functionality to not apply weight decay
    # to bias and LayerNorm scale parameters. decay_mask_fn returns a
    # mask boolean with the same structure as the parameters.
    # The mask is True for parameters that should be decayed.
    def decay_mask_fn(params):
        flat_params = traverse_util.flatten_dict(params)
751
752
        # find out all LayerNorm parameters
        layer_norm_candidates = ["layernorm", "layer_norm", "ln"]
753
754
755
756
757
758
        layer_norm_named_params = {
            layer[-2:]
            for layer_norm_name in layer_norm_candidates
            for layer in flat_params.keys()
            if layer_norm_name in "".join(layer).lower()
        }
759
        flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_named_params) for path in flat_params}
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
        return traverse_util.unflatten_dict(flat_mask)

    # create adam optimizer
    adamw = optax.adamw(
        learning_rate=linear_decay_lr_schedule_fn,
        b1=training_args.adam_beta1,
        b2=training_args.adam_beta2,
        eps=training_args.adam_epsilon,
        weight_decay=training_args.weight_decay,
        mask=decay_mask_fn,
    )

    # Setup train state
    state = TrainState.create(apply_fn=model.__call__, params=model.params, tx=adamw, dropout_rng=dropout_rng)

    # label smoothed cross entropy
    def loss_fn(logits, labels, padding_mask, label_smoothing_factor=0.0):
        """
        The label smoothing implementation is adapted from Flax's official example:
        https://github.com/google/flax/blob/87a211135c6a377c8f29048a1cac3840e38b9da4/examples/wmt/train.py#L104
        """
        vocab_size = logits.shape[-1]
        confidence = 1.0 - label_smoothing_factor
        low_confidence = (1.0 - confidence) / (vocab_size - 1)
        normalizing_constant = -(
            confidence * jnp.log(confidence) + (vocab_size - 1) * low_confidence * jnp.log(low_confidence + 1e-20)
        )
        soft_labels = onehot(labels, vocab_size, on_value=confidence, off_value=low_confidence)

        loss = optax.softmax_cross_entropy(logits, soft_labels)
        loss = loss - normalizing_constant

        # ignore padded tokens from loss
        loss = loss * padding_mask
794
795
796
        loss = loss.sum()
        num_labels = padding_mask.sum()
        return loss, num_labels
797
798
799
800
801
802
803
804

    # Define gradient update step fn
    def train_step(state, batch, label_smoothing_factor=0.0):
        dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng)

        def compute_loss(params):
            labels = batch.pop("labels")
            logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]
805
806
            loss, num_labels = loss_fn(logits, labels, batch["decoder_attention_mask"], label_smoothing_factor)
            return loss, num_labels
807

808
809
810
        grad_fn = jax.value_and_grad(compute_loss, has_aux=True)
        (loss, num_labels), grad = grad_fn(state.params)
        num_labels = jax.lax.psum(num_labels, "batch")
811

812
813
814
815
816
817
818
        # true loss = total loss / total samples
        loss = jax.lax.psum(loss, "batch")
        loss = jax.tree_util.tree_map(lambda x: x / num_labels, loss)

        # true grad = total grad / total samples
        grad = jax.lax.psum(grad, "batch")
        grad = jax.tree_util.tree_map(lambda x: x / num_labels, grad)
819
820
821
822
823
824
825
826
827
828
        new_state = state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng)

        metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)}
        return new_state, metrics

    # Define eval fn
    def eval_step(params, batch, label_smoothing_factor=0.0):
        labels = batch.pop("labels")
        logits = model(**batch, params=params, train=False)[0]

829
830
831
832
833
834
835
        loss, num_labels = loss_fn(logits, labels, batch["decoder_attention_mask"], label_smoothing_factor)
        num_labels = jax.lax.psum(num_labels, "batch")

        # true loss = total loss / total samples
        loss = jax.lax.psum(loss, "batch")
        loss = jax.tree_util.tree_map(lambda x: x / num_labels, loss)

836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
        metrics = {"loss": loss}
        return metrics

    # Define generation function
    max_length = (
        data_args.val_max_target_length if data_args.val_max_target_length is not None else model.config.max_length
    )
    num_beams = data_args.num_beams if data_args.num_beams is not None else model.config.num_beams
    gen_kwargs = {"max_length": max_length, "num_beams": num_beams}

    def generate_step(params, batch):
        model.params = params
        output_ids = model.generate(batch["input_ids"], attention_mask=batch["attention_mask"], **gen_kwargs)
        return output_ids.sequences

    # Create parallel version of the train and eval step
    p_train_step = jax.pmap(
        partial(train_step, label_smoothing_factor=training_args.label_smoothing_factor), "batch", donate_argnums=(0,)
    )
    p_eval_step = jax.pmap(partial(eval_step, label_smoothing_factor=training_args.label_smoothing_factor), "batch")
    p_generate_step = jax.pmap(generate_step, "batch")

    # Replicate the train state on each device
    state = state.replicate()

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {num_epochs}")
    logger.info(f"  Instantaneous batch size per device = {training_args.per_device_train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel & distributed) = {train_batch_size}")
    logger.info(f"  Total optimization steps = {total_train_steps}")

    train_time = 0
    epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0)
    for epoch in epochs:
        # ======================== Training ================================
        train_start = time.time()

        # Create sampling rng
        rng, input_rng = jax.random.split(rng)
        train_metrics = []

        # Generate an epoch by shuffling sampling indices from the train dataset
        train_loader = data_loader(input_rng, train_dataset, train_batch_size, shuffle=True)
        steps_per_epoch = len(train_dataset) // train_batch_size
        # train
        for _ in tqdm(range(steps_per_epoch), desc="Training...", position=1, leave=False):
            batch = next(train_loader)
884
            batch = shard(batch)
885
886
887
888
889
890
891
892
            state, train_metric = p_train_step(state, batch)
            train_metrics.append(train_metric)

        train_time += time.time() - train_start

        train_metric = unreplicate(train_metric)

        epochs.write(
Sylvain Gugger's avatar
Sylvain Gugger committed
893
894
            f"Epoch... ({epoch + 1}/{num_epochs} | Loss: {train_metric['loss']}, Learning Rate:"
            f" {train_metric['learning_rate']})"
895
896
897
898
899
900
901
        )

        # ======================== Evaluating ==============================
        eval_metrics = []
        eval_preds = []
        eval_labels = []

902
903
        eval_loader = data_loader(input_rng, eval_dataset, eval_batch_size, drop_last=False)
        eval_steps = math.ceil(len(eval_dataset) / eval_batch_size)
904
905
906
907
908
        for _ in tqdm(range(eval_steps), desc="Evaluating...", position=2, leave=False):
            # Model forward
            batch = next(eval_loader)
            labels = batch["labels"]

909
910
911
            metrics = pad_shard_unpad(p_eval_step, static_return=True)(
                state.params, batch, min_device_batch=per_device_eval_batch_size
            )
912
913
914
915
            eval_metrics.append(metrics)

            # generation
            if data_args.predict_with_generate:
916
                generated_ids = pad_shard_unpad(p_generate_step)(state.params, batch)
917
                eval_preds.extend(jax.device_get(generated_ids.reshape(-1, gen_kwargs["max_length"])))
918
                eval_labels.extend(labels)
919
920
921

        # normalize eval metrics
        eval_metrics = get_metrics(eval_metrics)
922
        eval_metrics = jax.tree_util.tree_map(jnp.mean, eval_metrics)
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940

        # compute ROUGE metrics
        rouge_desc = ""
        if data_args.predict_with_generate:
            rouge_metrics = compute_metrics(eval_preds, eval_labels)
            eval_metrics.update(rouge_metrics)
            rouge_desc = " ".join([f"Eval {key}: {value} |" for key, value in rouge_metrics.items()])

        # Print metrics and update progress bar
        desc = f"Epoch... ({epoch + 1}/{num_epochs} | Eval Loss: {eval_metrics['loss']} | {rouge_desc})"
        epochs.write(desc)
        epochs.desc = desc

        # Save metrics
        if has_tensorboard and jax.process_index() == 0:
            cur_step = epoch * (len(train_dataset) // train_batch_size)
            write_metric(summary_writer, train_metrics, eval_metrics, train_time, cur_step)

941
942
        # save checkpoint after each epoch and push checkpoint to the hub
        if jax.process_index() == 0:
943
            params = jax.device_get(jax.tree_util.tree_map(lambda x: x[0], state.params))
944
945
946
947
948
            model.save_pretrained(training_args.output_dir, params=params)
            tokenizer.save_pretrained(training_args.output_dir)
            if training_args.push_to_hub:
                repo.push_to_hub(commit_message=f"Saving weights and logs of epoch {epoch}", blocking=False)

949
950
951
952
953
954
955
956
    # ======================== Prediction loop ==============================
    if training_args.do_predict:
        logger.info("*** Predict ***")

        pred_metrics = []
        pred_generations = []
        pred_labels = []

957
958
        pred_loader = data_loader(input_rng, predict_dataset, eval_batch_size, drop_last=False)
        pred_steps = math.ceil(len(predict_dataset) / eval_batch_size)
959
960
961
962
963
        for _ in tqdm(range(pred_steps), desc="Predicting...", position=2, leave=False):
            # Model forward
            batch = next(pred_loader)
            labels = batch["labels"]

964
965
966
            metrics = pad_shard_unpad(p_eval_step, static_return=True)(
                state.params, batch, min_device_batch=per_device_eval_batch_size
            )
967
968
969
970
            pred_metrics.append(metrics)

            # generation
            if data_args.predict_with_generate:
971
                generated_ids = pad_shard_unpad(p_generate_step)(state.params, batch)
972
                pred_generations.extend(jax.device_get(generated_ids.reshape(-1, gen_kwargs["max_length"])))
973
                pred_labels.extend(labels)
974
975
976

        # normalize prediction metrics
        pred_metrics = get_metrics(pred_metrics)
977
        pred_metrics = jax.tree_util.tree_map(jnp.mean, pred_metrics)
978
979
980
981
982
983
984
985
986
987
988
989

        # compute ROUGE metrics
        rouge_desc = ""
        if data_args.predict_with_generate:
            rouge_metrics = compute_metrics(pred_generations, pred_labels)
            pred_metrics.update(rouge_metrics)
            rouge_desc = " ".join([f"Predict {key}: {value} |" for key, value in rouge_metrics.items()])

        # Print metrics
        desc = f"Predict Loss: {pred_metrics['loss']} | {rouge_desc})"
        logger.info(desc)

Suraj Patil's avatar
Suraj Patil committed
990
991
992
993
994
995
996
        # save final metrics in json
        if jax.process_index() == 0:
            rouge_metrics = {f"test_{metric_name}": value for metric_name, value in rouge_metrics.items()}
            path = os.path.join(training_args.output_dir, "test_results.json")
            with open(path, "w") as f:
                json.dump(rouge_metrics, f, indent=4, sort_keys=True)

997
998
999

if __name__ == "__main__":
    main()