extract_features_pytorch.py 11.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Extract pre-computed feature vectors from BERT."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

thomwolf's avatar
thomwolf committed
21
import argparse
22
23
import codecs
import collections
thomwolf's avatar
thomwolf committed
24
import logging
25
26
27
28
29
import json
import re

import tokenization

thomwolf's avatar
thomwolf committed
30
31
32
33
34
35
36
37
38
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from torch.utils.data.distributed import DistributedSampler

from modeling_pytorch import BertConfig, BertModel

logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s', 
                    datefmt = '%m/%d/%Y %H:%M:%S',
                    level = logging.INFO)
logger = logging.getLogger(__name__)
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132


class InputExample(object):

    def __init__(self, unique_id, text_a, text_b):
        self.unique_id = unique_id
        self.text_a = text_a
        self.text_b = text_b


class InputFeatures(object):
    """A single set of features of data."""

    def __init__(self, unique_id, tokens, input_ids, input_mask, input_type_ids):
        self.unique_id = unique_id
        self.tokens = tokens
        self.input_ids = input_ids
        self.input_mask = input_mask
        self.input_type_ids = input_type_ids


def convert_examples_to_features(examples, seq_length, tokenizer):
    """Loads a data file into a list of `InputBatch`s."""

    features = []
    for (ex_index, example) in enumerate(examples):
        tokens_a = tokenizer.tokenize(example.text_a)

        tokens_b = None
        if example.text_b:
            tokens_b = tokenizer.tokenize(example.text_b)

        if tokens_b:
            # Modifies `tokens_a` and `tokens_b` in place so that the total
            # length is less than the specified length.
            # Account for [CLS], [SEP], [SEP] with "- 3"
            _truncate_seq_pair(tokens_a, tokens_b, seq_length - 3)
        else:
            # Account for [CLS] and [SEP] with "- 2"
            if len(tokens_a) > seq_length - 2:
                tokens_a = tokens_a[0:(seq_length - 2)]

        # The convention in BERT is:
        # (a) For sequence pairs:
        #  tokens:   [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
        #  type_ids: 0   0  0    0    0     0       0 0    1  1  1  1   1 1
        # (b) For single sequences:
        #  tokens:   [CLS] the dog is hairy . [SEP]
        #  type_ids: 0   0   0   0  0     0 0
        #
        # Where "type_ids" are used to indicate whether this is the first
        # sequence or the second sequence. The embedding vectors for `type=0` and
        # `type=1` were learned during pre-training and are added to the wordpiece
        # embedding vector (and position vector). This is not *strictly* necessary
        # since the [SEP] token unambigiously separates the sequences, but it makes
        # it easier for the model to learn the concept of sequences.
        #
        # For classification tasks, the first vector (corresponding to [CLS]) is
        # used as as the "sentence vector". Note that this only makes sense because
        # the entire model is fine-tuned.
        tokens = []
        input_type_ids = []
        tokens.append("[CLS]")
        input_type_ids.append(0)
        for token in tokens_a:
            tokens.append(token)
            input_type_ids.append(0)
        tokens.append("[SEP]")
        input_type_ids.append(0)

        if tokens_b:
            for token in tokens_b:
                tokens.append(token)
                input_type_ids.append(1)
            tokens.append("[SEP]")
            input_type_ids.append(1)

        input_ids = tokenizer.convert_tokens_to_ids(tokens)

        # The mask has 1 for real tokens and 0 for padding tokens. Only real
        # tokens are attended to.
        input_mask = [1] * len(input_ids)

        # Zero-pad up to the sequence length.
        while len(input_ids) < seq_length:
            input_ids.append(0)
            input_mask.append(0)
            input_type_ids.append(0)

        assert len(input_ids) == seq_length
        assert len(input_mask) == seq_length
        assert len(input_type_ids) == seq_length

        if ex_index < 5:
thomwolf's avatar
thomwolf committed
133
134
135
136
137
138
            logger.info("*** Example ***")
            logger.info("unique_id: %s" % (example.unique_id))
            logger.info("tokens: %s" % " ".join([str(x) for x in tokens]))
            logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
            logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
            logger.info(
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
                "input_type_ids: %s" % " ".join([str(x) for x in input_type_ids]))

        features.append(
            InputFeatures(
                unique_id=example.unique_id,
                tokens=tokens,
                input_ids=input_ids,
                input_mask=input_mask,
                input_type_ids=input_type_ids))
    return features


def _truncate_seq_pair(tokens_a, tokens_b, max_length):
    """Truncates a sequence pair in place to the maximum length."""

    # This is a simple heuristic which will always truncate the longer sequence
    # one token at a time. This makes more sense than truncating an equal percent
    # of tokens from each, since if one sequence is very short then each token
    # that's truncated likely contains more information than a longer sequence.
    while True:
        total_length = len(tokens_a) + len(tokens_b)
        if total_length <= max_length:
            break
        if len(tokens_a) > len(tokens_b):
            tokens_a.pop()
        else:
            tokens_b.pop()


def read_examples(input_file):
    """Read a list of `InputExample`s from an input file."""
    examples = []
    unique_id = 0
thomwolf's avatar
thomwolf committed
172
    with open(input_file, "r") as reader:
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
        while True:
            line = tokenization.convert_to_unicode(reader.readline())
            if not line:
                break
            line = line.strip()
            text_a = None
            text_b = None
            m = re.match(r"^(.*) \|\|\| (.*)$", line)
            if m is None:
                text_a = line
            else:
                text_a = m.group(1)
                text_b = m.group(2)
            examples.append(
                InputExample(unique_id=unique_id, text_a=text_a, text_b=text_b))
            unique_id += 1
    return examples


thomwolf's avatar
thomwolf committed
192
def main():
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--input_file", default=None, type=str, required=True)
    parser.add_argument("--vocab_file", default=None, type=str, required=True, 
                        help="The vocabulary file that the BERT model was trained on.")
    parser.add_argument("--output_file", default=None, type=str, required=True)
    parser.add_argument("--bert_config_file", default=None, type=str, required=True,
                        help="The config json file corresponding to the pre-trained BERT model. "
                            "This specifies the model architecture.")
    parser.add_argument("--init_checkpoint", default=None, type=str, required=True, 
                        help="Initial checkpoint (usually from a pre-trained BERT model).")

    ## Other parameters
    parser.add_argument("--layers", default="-1,-2,-3,-4", type=str)
    parser.add_argument("--max_seq_length", default=128, type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. Sequences longer "
                            "than this will be truncated, and sequences shorter than this will be padded.")
    parser.add_argument("--do_lower_case", default=True, action='store_true', 
                        help="Whether to lower case the input text. Should be True for uncased "
                            "models and False for cased models.")
    parser.add_argument("--batch_size", default=32, type=int, help="Batch size for predictions.")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help = "local_rank for distributed training on gpus")

    args = parser.parse_args()

thomwolf's avatar
thomwolf committed
222
223
224
225
226
227
228
229
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # print("Initializing the distributed backend: NCCL")
    print("device", device, "n_gpu", n_gpu)
230
231
232

    layer_indexes = [int(x) for x in args.layers.split(",")]

thomwolf's avatar
thomwolf committed
233
    bert_config = BertConfig.from_json_file(args.bert_config_file)
234
235
236
237
238
239
240
241
242
243
244
245
246

    tokenizer = tokenization.FullTokenizer(
        vocab_file=args.vocab_file, do_lower_case=args.do_lower_case)

    examples = read_examples(args.input_file)

    features = convert_examples_to_features(
        examples=examples, seq_length=args.max_seq_length, tokenizer=tokenizer)

    unique_id_to_feature = {}
    for feature in features:
        unique_id_to_feature[feature.unique_id] = feature

thomwolf's avatar
thomwolf committed
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
    model = BertModel(bert_config)
    if args.init_checkpoint is not None:
        model.load_state_dict(torch.load(args.init_checkpoint, map_location='cpu'))
    model.to(device)

    all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
    all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
    all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
    all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)

    eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_example_index)
    if args.local_rank == -1:
        eval_sampler = SequentialSampler(eval_data)
    else:
        eval_sampler = DistributedSampler(eval_data)
    eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.batch_size)

    model.eval()
    with open(args.output_file, "w", encoding='utf-8') as writer:
        for input_ids, input_mask, segment_ids, example_indices in eval_dataloader:
            input_ids = input_ids.to(device)
            input_mask = input_mask.float().to(device)
            segment_ids = segment_ids.to(device)

            all_encoder_layers, _ = model(input_ids, segment_ids, input_mask)

            for enc_layers, example_index in zip(all_encoder_layers, example_indices):
                feature = features[example_index.item()]
                unique_id = int(feature.unique_id)
                # feature = unique_id_to_feature[unique_id]
                output_json = collections.OrderedDict()
                output_json["linex_index"] = unique_id
                all_features = []
                for (i, token) in enumerate(feature.tokens):
                    all_layers = []
                    for (j, layer_index) in enumerate(layer_indexes):
                        layer_output = enc_layers[int(layer_index)].detach().cpu().numpy()
                        layers = collections.OrderedDict()
                        layers["index"] = layer_index
                        layers["values"] = [
                            round(float(x), 6) for x in layer_output[i:(i + 1)].flat
                        ]
                        all_layers.append(layers)
                    features = collections.OrderedDict()
                    features["token"] = token
                    features["layers"] = all_layers
                    all_features.append(features)
                output_json["features"] = all_features
                writer.write(json.dumps(output_json) + "\n")
296
297
298


if __name__ == "__main__":
thomwolf's avatar
thomwolf committed
299
    main()