test_fsdp.py 13.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import itertools
import os
17
import subprocess
18
import unittest
19
from copy import deepcopy
20
21
22
23
24
25
26
27
28
from functools import partial

from parameterized import parameterized

import tests.trainer.test_trainer
from tests.trainer.test_trainer import TrainerIntegrationCommon  # noqa
from transformers import is_torch_available
from transformers.testing_utils import (
    TestCasePlus,
Hz, Ji's avatar
Hz, Ji committed
29
    backend_device_count,
30
31
32
33
    execute_subprocess_async,
    mockenv_context,
    require_accelerate,
    require_fsdp,
Hz, Ji's avatar
Hz, Ji committed
34
    require_torch_accelerator,
35
    require_torch_gpu,
Hz, Ji's avatar
Hz, Ji committed
36
    require_torch_multi_accelerator,
37
    slow,
Hz, Ji's avatar
Hz, Ji committed
38
    torch_device,
39
40
41
)
from transformers.trainer_callback import TrainerState
from transformers.trainer_utils import FSDPOption, set_seed
Hz, Ji's avatar
Hz, Ji committed
42
from transformers.utils import is_accelerate_available, is_torch_bf16_available_on_device
43
44


45
46
if is_torch_available():
    from transformers.pytorch_utils import is_torch_greater_or_equal_than_2_1
47
    from transformers.trainer import FSDP_MODEL_NAME
48
49
50
else:
    is_torch_greater_or_equal_than_2_1 = False

51
52
53
# default torch.distributed port
DEFAULT_MASTER_PORT = "10999"
dtypes = ["fp16"]
Hz, Ji's avatar
Hz, Ji committed
54
if is_torch_bf16_available_on_device(torch_device):
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
    dtypes += ["bf16"]
sharding_strategies = ["full_shard", "shard_grad_op"]
state_dict_types = ["FULL_STATE_DICT", "SHARDED_STATE_DICT"]
set_seed(42)
params = list(itertools.product(sharding_strategies, dtypes))


def get_master_port(real_launcher=False):
    """
    When using a single gpu launcher emulation (i.e. not deepspeed or python -m torch.distributed)
    the issue is that once the port is tied it can't be used anywhere else outside of this process,
    since torch.dist doesn't free the port until the process exits. Therefore for the sake of being
    able to run both emulated launcher and normal launcher tests we need 2 distinct ports.

    This function will give the right port in the right context. For real launcher it'll give the
    base port, for emulated launcher it'll give the base port + 1. In both cases a string is
    returned.

    Args:
        `real_launcher`: whether a real launcher is going to be used, or the emulated one

    """

    master_port_base = os.environ.get("DS_TEST_PORT", DEFAULT_MASTER_PORT)
    if not real_launcher:
        master_port_base = str(int(master_port_base) + 1)
    return master_port_base


if is_torch_available():
    from tests.trainer.test_trainer import (  # noqa
        RegressionModelConfig,
        RegressionPreTrainedModel,
    )

    # hack to restore original logging level pre #21700
    get_regression_trainer = partial(tests.trainer.test_trainer.get_regression_trainer, log_level="info")

93
require_fsdp_version = require_fsdp
94
95
96
97
98
99
100
101
102
103
104
105
106
107
if is_accelerate_available():
    from accelerate.utils.constants import (
        FSDP_PYTORCH_VERSION,
        FSDP_SHARDING_STRATEGY,
    )

    require_fsdp_version = partial(require_fsdp, min_version=FSDP_PYTORCH_VERSION)


def get_launcher(distributed=False, use_accelerate=False):
    # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup
    # - it won't be able to handle that
    # 2. for now testing with just 2 gpus max (since some quality tests may give different
    # results with mode gpus because we use very little data)
Hz, Ji's avatar
Hz, Ji committed
108
    num_gpus = min(2, backend_device_count(torch_device)) if distributed else 1
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
    master_port = get_master_port(real_launcher=True)
    if use_accelerate:
        return f"""accelerate launch
        --num_processes {num_gpus}
        --main_process_port {master_port}
        --use_fsdp
        --fsdp_auto_wrap_policy TRANSFORMER_BASED_WRAP
        --fsdp_state_dict_type SHARDED_STATE_DICT
        --fsdp_transformer_layer_cls_to_wrap BertLayer""".split()
    return f"torchrun --nnodes 1 --nproc-per-node {num_gpus} --master-port {master_port}".split()


def _parameterized_custom_name_func(func, param_num, param):
    # customize the test name generator function as we want both params to appear in the sub-test
    # name, as by default it shows only the first param
    param_based_name = parameterized.to_safe_name("_".join(str(x) for x in param.args))
    return f"{func.__name__}_{param_based_name}"


@require_accelerate
Hz, Ji's avatar
Hz, Ji committed
129
@require_torch_accelerator
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
@require_fsdp_version
class TrainerIntegrationFSDP(TestCasePlus, TrainerIntegrationCommon):
    def setUp(self):
        super().setUp()
        master_port = get_master_port(real_launcher=False)
        self.dist_env_1_gpu = {
            "MASTER_ADDR": "localhost",
            "MASTER_PORT": master_port,
            "RANK": "0",
            "LOCAL_RANK": "0",
            "WORLD_SIZE": "1",
        }

        self.fsdp_config = {
            "backward_prefetch": "backward_pre",
            "forward_prefetch": "False",
            "limit_all_gathers": "False",
            "use_orig_params": "True",
            "sync_module_states": "True",
149
            "cpu_ram_efficient_loading": "True",
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
            "activation_checkpointing": "False",
            "min_num_params": 1,
        }

    def tearDown(self):
        super().tearDown()

    @parameterized.expand(params, name_func=_parameterized_custom_name_func)
    def test_fsdp_config(self, sharding_strategy, dtype):
        output_dir = self.get_auto_remove_tmp_dir()
        kwargs = {
            "output_dir": output_dir,
            "train_len": 128,
            "save_steps": 5,
            "learning_rate": 0.1,
            "fsdp": f"{sharding_strategy} offload auto_wrap",
            "fsdp_config": self.fsdp_config,
        }
        kwargs[dtype] = True
        with mockenv_context(**self.dist_env_1_gpu):
            trainer = get_regression_trainer(**kwargs)
            self.assertEqual(trainer.args.fsdp[0], sharding_strategy)
            self.assertEqual(trainer.args.fsdp[1], FSDPOption.OFFLOAD)
            self.assertEqual(trainer.args.fsdp[2], FSDPOption.AUTO_WRAP)
            for k, v in trainer.args.fsdp_config.items():
                self.assertEqual(v, self.fsdp_config[k])
            self.assertEqual(os.environ.get("ACCELERATE_USE_FSDP", "false"), "true")

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
    @parameterized.expand(params, name_func=_parameterized_custom_name_func)
    def test_fsdp_config_transformers_auto_wrap(self, sharding_strategy, dtype):
        output_dir = self.get_auto_remove_tmp_dir()
        fsdp_config = deepcopy(self.fsdp_config)
        del fsdp_config["min_num_params"]
        fsdp_config["transformer_layer_cls_to_wrap"] = "BertLayer"
        kwargs = {
            "output_dir": output_dir,
            "train_len": 128,
            "save_steps": 5,
            "learning_rate": 0.1,
            "fsdp": f"{sharding_strategy} offload auto_wrap",
            "fsdp_config": fsdp_config,
        }
        kwargs[dtype] = True
        prefix = "FSDP_"
        with mockenv_context(**self.dist_env_1_gpu):
            trainer = get_regression_trainer(**kwargs)
            self.assertEqual(trainer.args.fsdp[0], sharding_strategy)
            self.assertEqual(trainer.args.fsdp[1], FSDPOption.OFFLOAD)
            self.assertEqual(trainer.args.fsdp[2], FSDPOption.AUTO_WRAP)
            fsdp_sharding_strategy = (
                str(FSDP_SHARDING_STRATEGY.index(sharding_strategy.upper()) + 1)
                if is_accelerate_available("0.26.0")
                else sharding_strategy.upper()
            )
            self.assertEqual(os.environ[f"{prefix}SHARDING_STRATEGY"], fsdp_sharding_strategy)
            self.assertEqual(os.environ[f"{prefix}OFFLOAD_PARAMS"], "true")
            self.assertEqual(os.environ[f"{prefix}AUTO_WRAP_POLICY"], "TRANSFORMER_BASED_WRAP")
            self.assertEqual(
                os.environ[f"{prefix}TRANSFORMER_CLS_TO_WRAP"], ",".join(fsdp_config["transformer_layer_cls_to_wrap"])
            )
            self.assertEqual(os.environ[f"{prefix}BACKWARD_PREFETCH"], fsdp_config["backward_prefetch"].upper())
            self.assertEqual(os.environ[f"{prefix}FORWARD_PREFETCH"], fsdp_config["forward_prefetch"])
            self.assertEqual(os.environ[f"{prefix}USE_ORIG_PARAMS"], fsdp_config["use_orig_params"])
            self.assertEqual(os.environ[f"{prefix}SYNC_MODULE_STATES"], fsdp_config["sync_module_states"])
214
215
216
            self.assertEqual(
                os.environ[f"{prefix}CPU_RAM_EFFICIENT_LOADING"], fsdp_config["cpu_ram_efficient_loading"]
            )
217
218
            self.assertEqual(os.environ.get("ACCELERATE_USE_FSDP", "false"), "true")

219
    @parameterized.expand(params, name_func=_parameterized_custom_name_func)
Hz, Ji's avatar
Hz, Ji committed
220
    @require_torch_multi_accelerator
221
222
223
224
225
226
227
228
229
230
231
    @slow
    def test_basic_run(self, sharding_strategy, dtype):
        launcher = get_launcher(distributed=True, use_accelerate=False)
        output_dir = self.get_auto_remove_tmp_dir()
        args = self.get_base_args(output_dir, 1, 50).split() + [f"--{dtype}"]
        fsdp_args = ["--fsdp", f"{sharding_strategy} auto_wrap", "--fsdp_transformer_layer_cls_to_wrap", "BertLayer"]
        script = [f"{self.examples_dir_str}/pytorch/text-classification/run_glue.py"]
        cmd = launcher + script + args + fsdp_args
        execute_subprocess_async(cmd, env=self.get_env())

    @parameterized.expand(dtypes)
Hz, Ji's avatar
Hz, Ji committed
232
    @require_torch_multi_accelerator
233
    @slow
234
    @unittest.skipIf(not is_torch_greater_or_equal_than_2_1, reason="This test on pytorch 2.0 takes 4 hours.")
235
236
237
238
239
240
241
242
243
244
    def test_basic_run_with_cpu_offload(self, dtype):
        launcher = get_launcher(distributed=True, use_accelerate=False)
        output_dir = self.get_auto_remove_tmp_dir()
        args = self.get_base_args(output_dir, 1, 50).split() + [f"--{dtype}", "--max_steps", "10"]
        fsdp_args = ["--fsdp", "full_shard auto_wrap offload", "--fsdp_transformer_layer_cls_to_wrap", "BertLayer"]
        script = [f"{self.examples_dir_str}/pytorch/text-classification/run_glue.py"]
        cmd = launcher + script + args + fsdp_args
        execute_subprocess_async(cmd, env=self.get_env())

    @parameterized.expand(state_dict_types, name_func=_parameterized_custom_name_func)
Hz, Ji's avatar
Hz, Ji committed
245
    @require_torch_multi_accelerator
246
247
248
249
250
251
252
253
254
255
256
257
258
259
    @slow
    def test_training_and_can_resume_normally(self, state_dict_type):
        output_dir = self.get_auto_remove_tmp_dir("./xxx", after=False)

        sharding_strategy = "full_shard"
        use_accelerate = state_dict_type == "SHARDED_STATE_DICT"
        launcher = get_launcher(True, use_accelerate=use_accelerate)
        args = self.get_base_args(output_dir, 2, 25).split()
        script = [f"{self.examples_dir_str}/pytorch/text-classification/run_glue.py"]
        logs = self.run_cmd_and_get_logs(use_accelerate, sharding_strategy, launcher, script, args, output_dir)

        # resume from ckpt
        checkpoint = os.path.join(output_dir, "checkpoint-115")
        resume_args = args + f"--resume_from_checkpoint {checkpoint}".split()
260
261
262
263
264
265
266
267
268
269
270
271
272

        is_fsdp_ckpt = os.path.isdir(checkpoint) and (
            # this checks the FSDP state dict when `SHARDED_STATE_DICT` is used
            any(
                FSDP_MODEL_NAME in folder_name
                for folder_name in os.listdir(checkpoint)
                if os.path.isdir(os.path.join(checkpoint, folder_name))
            )
            # this checks the FSDP state dict when `FULL_STATE_DICT` is used
            or os.path.isfile(os.path.join(checkpoint, f"{FSDP_MODEL_NAME}.bin"))
        )
        self.assertTrue(is_fsdp_ckpt)

273
274
275
276
277
278
279
280
        logs_resume = self.run_cmd_and_get_logs(
            use_accelerate, sharding_strategy, launcher, script, resume_args, output_dir
        )

        for log, log1 in zip(logs, logs_resume):
            if "learning_rate" in log:
                self.assertAlmostEqual(log["learning_rate"], log1["learning_rate"], delta=1e-5)

281
282
283
284
285
286
287
288
289
290
291
292
293
294
    @require_torch_multi_accelerator
    @slow
    @require_torch_gpu
    @require_fsdp
    def test_fsdp_cpu_offloading(self):
        try:
            subprocess.run(
                "accelerate launch utils/testing_scripts/fsdp_cpu_offloading.py --config utils/testing_scripts/dummy_fsdp_config.yml",
                shell=True,
                check=True,
            )
        except:  # noqa
            raise AssertionError("CPU offloading failed with FSDP!")

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
    def run_cmd_and_get_logs(self, use_accelerate, sharding_strategy, launcher, script, args, output_dir):
        if not use_accelerate:
            fsdp_args = [
                "--fsdp",
                f"{sharding_strategy} auto_wrap",
                "--fsdp_transformer_layer_cls_to_wrap",
                "BertLayer",
            ]
            cmd = launcher + script + args + fsdp_args
        else:
            fsdp_config = f"""
                --fsdp_sharding_strategy {FSDP_SHARDING_STRATEGY.index(sharding_strategy.upper()) + 1}
            """.split()
            cmd = launcher + fsdp_config + script + args

        # keep for quick debug
        # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
        execute_subprocess_async(cmd, env=self.get_env())
        logs = TrainerState.load_from_json(os.path.join(output_dir, "trainer_state.json")).log_history
        return logs

    def get_base_args(self, output_dir, num_epochs, logging_steps):
        return f"""
318
            --model_name_or_path google-bert/bert-base-cased
319
320
321
322
323
324
325
326
327
328
329
330
            --task_name mrpc
            --output_dir {output_dir}
            --overwrite_output_dir
            --do_train
            --max_seq_length 128
            --per_device_train_batch_size 16
            --learning_rate 5e-5
            --num_train_epochs {num_epochs}
            --lr_scheduler_type cosine
            --logging_steps {logging_steps}
            --save_strategy epoch
            --do_eval
331
            --eval_strategy epoch
332
333
            --report_to none
        """