tokenization.py 14.1 KB
Newer Older
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections
import unicodedata
thomwolf's avatar
thomwolf committed
23
24
import os
import logging
25

thomwolf's avatar
thomwolf committed
26
27
28
29
30
31
32
33
from .file_utils import cached_path

logger = logging.getLogger(__name__)

PRETRAINED_VOCAB_ARCHIVE_MAP = {
    'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-vocab.txt",
    'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-vocab.txt",
    'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-vocab.txt",
thomwolf's avatar
thomwolf committed
34
35
36
    'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-vocab.txt",
    'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-vocab.txt",
    'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-vocab.txt",
thomwolf's avatar
thomwolf committed
37
38
    'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-vocab.txt",
}
39
40
41
42
43
44
45
46
47
PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP = {
    'bert-base-uncased': 512,
    'bert-large-uncased': 512,
    'bert-base-cased': 512,
    'bert-large-cased': 512,
    'bert-base-multilingual-uncased': 512,
    'bert-base-multilingual-cased': 512,
    'bert-base-chinese': 512,
}
48
VOCAB_NAME = 'vocab.txt'
49
50
51
52
53
54


def load_vocab(vocab_file):
    """Loads a vocabulary file into a dictionary."""
    vocab = collections.OrderedDict()
    index = 0
thomwolf's avatar
thomwolf committed
55
    with open(vocab_file, "r", encoding="utf-8") as reader:
56
        while True:
thomwolf's avatar
thomwolf committed
57
            token = reader.readline()
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
            if not token:
                break
            token = token.strip()
            vocab[token] = index
            index += 1
    return vocab


def whitespace_tokenize(text):
    """Runs basic whitespace cleaning and splitting on a peice of text."""
    text = text.strip()
    if not text:
        return []
    tokens = text.split()
    return tokens


thomwolf's avatar
thomwolf committed
75
76
class BertTokenizer(object):
    """Runs end-to-end tokenization: punctuation splitting + wordpiece"""
77

WrRan's avatar
WrRan committed
78
79
    def __init__(self, vocab_file, do_lower_case=True, max_len=None,
                 never_split=("[UNK]", "[SEP]", "[PAD]", "[CLS]", "[MASK]")):
thomwolf's avatar
thomwolf committed
80
81
82
83
        if not os.path.isfile(vocab_file):
            raise ValueError(
                "Can't find a vocabulary file at path '{}'. To load the vocabulary from a Google pretrained "
                "model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`".format(vocab_file))
84
        self.vocab = load_vocab(vocab_file)
thomwolf's avatar
thomwolf committed
85
86
        self.ids_to_tokens = collections.OrderedDict(
            [(ids, tok) for tok, ids in self.vocab.items()])
WrRan's avatar
WrRan committed
87
88
        self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case,
                                              never_split=never_split)
89
        self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab)
90
        self.max_len = max_len if max_len is not None else int(1e12)
91
92
93
94
95
96
97
98
99

    def tokenize(self, text):
        split_tokens = []
        for token in self.basic_tokenizer.tokenize(text):
            for sub_token in self.wordpiece_tokenizer.tokenize(token):
                split_tokens.append(sub_token)
        return split_tokens

    def convert_tokens_to_ids(self, tokens):
thomwolf's avatar
thomwolf committed
100
101
102
103
        """Converts a sequence of tokens into ids using the vocab."""
        ids = []
        for token in tokens:
            ids.append(self.vocab[token])
104
105
106
107
108
109
        if len(ids) > self.max_len:
            raise ValueError(
                "Token indices sequence length is longer than the specified maximum "
                " sequence length for this BERT model ({} > {}). Running this"
                " sequence through BERT will result in indexing errors".format(len(ids), self.max_len)
            )
thomwolf's avatar
thomwolf committed
110
111
112
113
114
115
116
117
118
119
        return ids

    def convert_ids_to_tokens(self, ids):
        """Converts a sequence of ids in wordpiece tokens using the vocab."""
        tokens = []
        for i in ids:
            tokens.append(self.ids_to_tokens[i])
        return tokens

    @classmethod
120
    def from_pretrained(cls, pretrained_model_name, cache_dir=None, *inputs, **kwargs):
thomwolf's avatar
thomwolf committed
121
122
123
124
125
126
127
128
        """
        Instantiate a PreTrainedBertModel from a pre-trained model file.
        Download and cache the pre-trained model file if needed.
        """
        if pretrained_model_name in PRETRAINED_VOCAB_ARCHIVE_MAP:
            vocab_file = PRETRAINED_VOCAB_ARCHIVE_MAP[pretrained_model_name]
        else:
            vocab_file = pretrained_model_name
129
130
        if os.path.isdir(vocab_file):
            vocab_file = os.path.join(vocab_file, VOCAB_NAME)
thomwolf's avatar
thomwolf committed
131
132
        # redirect to the cache, if necessary
        try:
133
            resolved_vocab_file = cached_path(vocab_file, cache_dir=cache_dir)
thomwolf's avatar
thomwolf committed
134
135
136
137
138
139
140
        except FileNotFoundError:
            logger.error(
                "Model name '{}' was not found in model name list ({}). "
                "We assumed '{}' was a path or url but couldn't find any file "
                "associated to this path or url.".format(
                    pretrained_model_name,
                    ', '.join(PRETRAINED_VOCAB_ARCHIVE_MAP.keys()),
141
142
143
144
145
146
147
                    vocab_file))
            return None
        if resolved_vocab_file == vocab_file:
            logger.info("loading vocabulary file {}".format(vocab_file))
        else:
            logger.info("loading vocabulary file {} from cache at {}".format(
                vocab_file, resolved_vocab_file))
148
149
150
151
152
        if pretrained_model_name in PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP:
            # if we're using a pretrained model, ensure the tokenizer wont index sequences longer
            # than the number of positional embeddings
            max_len = PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP[pretrained_model_name]
            kwargs['max_len'] = min(kwargs.get('max_len', int(1e12)), max_len)
153
154
        # Instantiate tokenizer.
        tokenizer = cls(resolved_vocab_file, *inputs, **kwargs)
thomwolf's avatar
thomwolf committed
155
        return tokenizer
156
157
158
159
160


class BasicTokenizer(object):
    """Runs basic tokenization (punctuation splitting, lower casing, etc.)."""

WrRan's avatar
WrRan committed
161
162
163
    def __init__(self,
                 do_lower_case=True,
                 never_split=("[UNK]", "[SEP]", "[PAD]", "[CLS]", "[MASK]")):
164
165
166
167
168
169
        """Constructs a BasicTokenizer.

        Args:
          do_lower_case: Whether to lower case the input.
        """
        self.do_lower_case = do_lower_case
WrRan's avatar
WrRan committed
170
        self.never_split = never_split
171
172
173
174

    def tokenize(self, text):
        """Tokenizes a piece of text."""
        text = self._clean_text(text)
175
176
177
178
179
180
181
        # This was added on November 1st, 2018 for the multilingual and Chinese
        # models. This is also applied to the English models now, but it doesn't
        # matter since the English models were not trained on any Chinese data
        # and generally don't have any Chinese data in them (there are Chinese
        # characters in the vocabulary because Wikipedia does have some Chinese
        # words in the English Wikipedia.).
        text = self._tokenize_chinese_chars(text)
182
183
184
        orig_tokens = whitespace_tokenize(text)
        split_tokens = []
        for token in orig_tokens:
185
            if self.do_lower_case and token not in self.never_split:
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
                token = token.lower()
                token = self._run_strip_accents(token)
            split_tokens.extend(self._run_split_on_punc(token))

        output_tokens = whitespace_tokenize(" ".join(split_tokens))
        return output_tokens

    def _run_strip_accents(self, text):
        """Strips accents from a piece of text."""
        text = unicodedata.normalize("NFD", text)
        output = []
        for char in text:
            cat = unicodedata.category(char)
            if cat == "Mn":
                continue
            output.append(char)
        return "".join(output)

    def _run_split_on_punc(self, text):
        """Splits punctuation on a piece of text."""
WrRan's avatar
WrRan committed
206
207
        if text in self.never_split:
            return [text]
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
        chars = list(text)
        i = 0
        start_new_word = True
        output = []
        while i < len(chars):
            char = chars[i]
            if _is_punctuation(char):
                output.append([char])
                start_new_word = True
            else:
                if start_new_word:
                    output.append([])
                start_new_word = False
                output[-1].append(char)
            i += 1

        return ["".join(x) for x in output]
225

226
227
228
229
230
231
232
233
234
235
236
237
    def _tokenize_chinese_chars(self, text):
        """Adds whitespace around any CJK character."""
        output = []
        for char in text:
            cp = ord(char)
            if self._is_chinese_char(cp):
                output.append(" ")
                output.append(char)
                output.append(" ")
            else:
                output.append(char)
        return "".join(output)
238

239
240
241
242
243
244
245
246
247
248
249
    def _is_chinese_char(self, cp):
        """Checks whether CP is the codepoint of a CJK character."""
        # This defines a "chinese character" as anything in the CJK Unicode block:
        #   https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
        #
        # Note that the CJK Unicode block is NOT all Japanese and Korean characters,
        # despite its name. The modern Korean Hangul alphabet is a different block,
        # as is Japanese Hiragana and Katakana. Those alphabets are used to write
        # space-separated words, so they are not treated specially and handled
        # like the all of the other languages.
        if ((cp >= 0x4E00 and cp <= 0x9FFF) or  #
250
251
252
253
254
255
256
                (cp >= 0x3400 and cp <= 0x4DBF) or  #
                (cp >= 0x20000 and cp <= 0x2A6DF) or  #
                (cp >= 0x2A700 and cp <= 0x2B73F) or  #
                (cp >= 0x2B740 and cp <= 0x2B81F) or  #
                (cp >= 0x2B820 and cp <= 0x2CEAF) or
                (cp >= 0xF900 and cp <= 0xFAFF) or  #
                (cp >= 0x2F800 and cp <= 0x2FA1F)):  #
257
            return True
258

259
        return False
260

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
    def _clean_text(self, text):
        """Performs invalid character removal and whitespace cleanup on text."""
        output = []
        for char in text:
            cp = ord(char)
            if cp == 0 or cp == 0xfffd or _is_control(char):
                continue
            if _is_whitespace(char):
                output.append(" ")
            else:
                output.append(char)
        return "".join(output)


class WordpieceTokenizer(object):
    """Runs WordPiece tokenization."""

    def __init__(self, vocab, unk_token="[UNK]", max_input_chars_per_word=100):
        self.vocab = vocab
        self.unk_token = unk_token
        self.max_input_chars_per_word = max_input_chars_per_word

    def tokenize(self, text):
        """Tokenizes a piece of text into its word pieces.

        This uses a greedy longest-match-first algorithm to perform tokenization
        using the given vocabulary.

        For example:
          input = "unaffable"
          output = ["un", "##aff", "##able"]

        Args:
          text: A single token or whitespace separated tokens. This should have
Julien Chaumond's avatar
Julien Chaumond committed
295
            already been passed through `BasicTokenizer`.
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372

        Returns:
          A list of wordpiece tokens.
        """

        output_tokens = []
        for token in whitespace_tokenize(text):
            chars = list(token)
            if len(chars) > self.max_input_chars_per_word:
                output_tokens.append(self.unk_token)
                continue

            is_bad = False
            start = 0
            sub_tokens = []
            while start < len(chars):
                end = len(chars)
                cur_substr = None
                while start < end:
                    substr = "".join(chars[start:end])
                    if start > 0:
                        substr = "##" + substr
                    if substr in self.vocab:
                        cur_substr = substr
                        break
                    end -= 1
                if cur_substr is None:
                    is_bad = True
                    break
                sub_tokens.append(cur_substr)
                start = end

            if is_bad:
                output_tokens.append(self.unk_token)
            else:
                output_tokens.extend(sub_tokens)
        return output_tokens


def _is_whitespace(char):
    """Checks whether `chars` is a whitespace character."""
    # \t, \n, and \r are technically contorl characters but we treat them
    # as whitespace since they are generally considered as such.
    if char == " " or char == "\t" or char == "\n" or char == "\r":
        return True
    cat = unicodedata.category(char)
    if cat == "Zs":
        return True
    return False


def _is_control(char):
    """Checks whether `chars` is a control character."""
    # These are technically control characters but we count them as whitespace
    # characters.
    if char == "\t" or char == "\n" or char == "\r":
        return False
    cat = unicodedata.category(char)
    if cat.startswith("C"):
        return True
    return False


def _is_punctuation(char):
    """Checks whether `chars` is a punctuation character."""
    cp = ord(char)
    # We treat all non-letter/number ASCII as punctuation.
    # Characters such as "^", "$", and "`" are not in the Unicode
    # Punctuation class but we treat them as punctuation anyways, for
    # consistency.
    if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or
            (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)):
        return True
    cat = unicodedata.category(char)
    if cat.startswith("P"):
        return True
    return False