run_transfo_xl.py 6.58 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Transformer XL model evaluation script.
    Adapted from https://github.com/kimiyoung/transformer-xl.
    In particular https://github.com/kimiyoung/transformer-xl/blob/master/pytorch/eval.py

    This script with default values evaluates a pretrained Transformer-XL on WikiText 103
"""
from __future__ import absolute_import, division, print_function, unicode_literals

import argparse
import logging
import time
import math

import torch

31
from pytorch_pretrained_bert import TransfoXLLMHeadModel, TransfoXLCorpus, TransfoXLTokenizer
thomwolf's avatar
thomwolf committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                    datefmt = '%m/%d/%Y %H:%M:%S',
                    level = logging.INFO)
logger = logging.getLogger(__name__)

def main():
    parser = argparse.ArgumentParser(description='PyTorch Transformer Language Model')
    parser.add_argument('--model_name', type=str, default='transfo-xl-wt103',
                        help='pretrained model name')
    parser.add_argument('--split', type=str, default='test',
                        choices=['all', 'valid', 'test'],
                        help='which split to evaluate')
    parser.add_argument('--batch_size', type=int, default=10,
                        help='batch size')
    parser.add_argument('--tgt_len', type=int, default=128,
                        help='number of tokens to predict')
    parser.add_argument('--ext_len', type=int, default=0,
                        help='length of the extended context')
    parser.add_argument('--mem_len', type=int, default=1600,
                        help='length of the retained previous heads')
    parser.add_argument('--clamp_len', type=int, default=1000,
                        help='max positional embedding index')
thomwolf's avatar
thomwolf committed
55
56
    parser.add_argument('--no_cuda', action='store_true',
                        help='Do not use CUDA even though CUA is available')
thomwolf's avatar
thomwolf committed
57
58
59
60
61
62
    parser.add_argument('--work_dir', type=str, required=True,
                        help='path to the work_dir')
    parser.add_argument('--no_log', action='store_true',
                        help='do not log the eval result')
    parser.add_argument('--same_length', action='store_true',
                        help='set same length attention with masking')
63
64
    parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
thomwolf's avatar
thomwolf committed
65
66
67
    args = parser.parse_args()
    assert args.ext_len >= 0, 'extended context length must be non-negative'

68
69
70
71
72
73
74
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

thomwolf's avatar
thomwolf committed
75
76
    device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
    logger.info("device: {}".format(device))
thomwolf's avatar
thomwolf committed
77
78
79
80
81
82

    # Load a pre-processed dataset
    # You can also build the corpus yourself using TransfoXLCorpus methods
    # The pre-processing involve computing word frequencies to prepare the Adaptive input and SoftMax
    # and tokenizing the dataset
    # The pre-processed corpus is a convertion (using the conversion script )
83
    tokenizer = TransfoXLTokenizer.from_pretrained(args.model_name)
thomwolf's avatar
thomwolf committed
84
85
86
87
88
89
90
91
92
    corpus = TransfoXLCorpus.from_pretrained(args.model_name)
    ntokens = len(corpus.vocab)

    va_iter = corpus.get_iterator('valid', args.batch_size, args.tgt_len,
        device=device, ext_len=args.ext_len)
    te_iter = corpus.get_iterator('test', args.batch_size, args.tgt_len,
        device=device, ext_len=args.ext_len)

    # Load a pre-trained model
thomwolf's avatar
thomwolf committed
93
    model = TransfoXLLMHeadModel.from_pretrained(args.model_name)
thomwolf's avatar
thomwolf committed
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
    model = model.to(device)

    logger.info('Evaluating with bsz {} tgt_len {} ext_len {} mem_len {} clamp_len {}'.format(
        args.batch_size, args.tgt_len, args.ext_len, args.mem_len, args.clamp_len))

    model.reset_length(args.tgt_len, args.ext_len, args.mem_len)
    if args.clamp_len > 0:
        model.clamp_len = args.clamp_len
    if args.same_length:
        model.same_length = True

    ###############################################################################
    # Evaluation code
    ###############################################################################
    def evaluate(eval_iter):
        # Turn on evaluation mode which disables dropout.
        model.eval()
        total_len, total_loss = 0, 0.
        start_time = time.time()
        with torch.no_grad():
114
            mems = None
thomwolf's avatar
thomwolf committed
115
            for idx, (data, target, seq_len) in enumerate(eval_iter):
thomwolf's avatar
thomwolf committed
116
                ret = model(data, target, mems)
thomwolf's avatar
thomwolf committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
                loss, mems = ret
                loss = loss.mean()
                total_loss += seq_len * loss.item()
                total_len += seq_len
            total_time = time.time() - start_time
        logger.info('Time : {:.2f}s, {:.2f}ms/segment'.format(
                total_time, 1000 * total_time / (idx+1)))
        return total_loss / total_len

    # Run on test data.
    if args.split == 'all':
        test_loss = evaluate(te_iter)
        valid_loss = evaluate(va_iter)
    elif args.split == 'valid':
        valid_loss = evaluate(va_iter)
        test_loss = None
    elif args.split == 'test':
        test_loss = evaluate(te_iter)
        valid_loss = None

    def format_log(loss, split):
        log_str = '| {0} loss {1:5.2f} | {0} ppl {2:9.3f} '.format(
            split, loss, math.exp(loss))
        return log_str

    log_str = ''
    if valid_loss is not None:
        log_str += format_log(valid_loss, 'valid')
    if test_loss is not None:
        log_str += format_log(test_loss, 'test')

    logger.info('=' * 100)
    logger.info(log_str)
    logger.info('=' * 100)

if __name__ == '__main__':
thomwolf's avatar
thomwolf committed
153
    main()