run_bart_sum.py 6.15 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import argparse
import glob
import logging
import os
import time

import torch
from torch.utils.data import DataLoader

from transformer_base import BaseTransformer, add_generic_args, generic_train, get_linear_schedule_with_warmup
from utils import SummarizationDataset


logger = logging.getLogger(__name__)


class BartSystem(BaseTransformer):

    mode = "language-modeling"

    def __init__(self, hparams):
        super(BartSystem, self).__init__(hparams, num_labels=None, mode=self.mode)

    def forward(
        self, input_ids, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, lm_labels=None
    ):
        return self.model(
            input_ids,
            attention_mask=attention_mask,
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
            lm_labels=lm_labels,
        )

    def _step(self, batch):
        y = batch["target_ids"]
        y_ids = y[:, :-1].contiguous()
        lm_labels = y[:, 1:].clone()
        lm_labels[y[:, 1:] == self.tokenizer.pad_token_id] = -100
        outputs = self(
            input_ids=batch["source_ids"],
            attention_mask=batch["source_mask"],
            decoder_input_ids=y_ids,
            lm_labels=lm_labels,
        )

        loss = outputs[0]

        return loss

    def training_step(self, batch, batch_idx):
        loss = self._step(batch)

        tensorboard_logs = {"train_loss": loss}
        return {"loss": loss, "log": tensorboard_logs}

    def validation_step(self, batch, batch_idx):
        loss = self._step(batch)
        return {"val_loss": loss}

    def validation_end(self, outputs):
        avg_loss = torch.stack([x["val_loss"] for x in outputs]).mean()
        tensorboard_logs = {"val_loss": avg_loss}
        return {"avg_val_loss": avg_loss, "log": tensorboard_logs}

    def test_step(self, batch, batch_idx):
        generated_ids = self.model.generate(
            batch["source_ids"],
            attention_mask=batch["source_mask"],
            num_beams=1,
            max_length=80,
            repetition_penalty=2.5,
            length_penalty=1.0,
            early_stopping=True,
        )
        preds = [
            self.tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True)
            for g in generated_ids
        ]
        target = [
            self.tokenizer.decode(t, skip_special_tokens=True, clean_up_tokenization_spaces=True)
            for t in batch["target_ids"]
        ]
        loss = self._step(batch)

        return {"val_loss": loss, "preds": preds, "target": target}

    def test_end(self, outputs):
        return self.validation_end(outputs)

    def test_epoch_end(self, outputs):
        output_test_predictions_file = os.path.join(self.hparams.output_dir, "test_predictions.txt")
        output_test_targets_file = os.path.join(self.hparams.output_dir, "test_targets.txt")
        # write predictions and targets for later rouge evaluation.
        with open(output_test_predictions_file, "w+") as p_writer, open(output_test_targets_file, "w+") as t_writer:
            for output_batch in outputs:
                p_writer.writelines(s + "\n" for s in output_batch["preds"])
                t_writer.writelines(s + "\n" for s in output_batch["target"])
            p_writer.close()
            t_writer.close()

        return self.test_end(outputs)

    def train_dataloader(self):
        train_dataset = SummarizationDataset(
            self.tokenizer, data_dir=self.hparams.data_dir, type_path="train", block_size=self.hparams.max_seq_length
        )
        dataloader = DataLoader(train_dataset, batch_size=self.hparams.train_batch_size)
        t_total = (
            (len(dataloader.dataset) // (self.hparams.train_batch_size * max(1, self.hparams.n_gpu)))
            // self.hparams.gradient_accumulation_steps
            * float(self.hparams.num_train_epochs)
        )
        scheduler = get_linear_schedule_with_warmup(
            self.opt, num_warmup_steps=self.hparams.warmup_steps, num_training_steps=t_total
        )
        self.lr_scheduler = scheduler
        return dataloader

    def val_dataloader(self):
        val_dataset = SummarizationDataset(
            self.tokenizer, data_dir=self.hparams.data_dir, type_path="val", block_size=self.hparams.max_seq_length
        )
        return DataLoader(val_dataset, batch_size=self.hparams.eval_batch_size)

    def test_dataloader(self):
        test_dataset = SummarizationDataset(
            self.tokenizer, data_dir=self.hparams.data_dir, type_path="test", block_size=self.hparams.max_seq_length
        )
        return DataLoader(test_dataset, batch_size=self.hparams.eval_batch_size)

    @staticmethod
    def add_model_specific_args(parser, root_dir):
        BaseTransformer.add_model_specific_args(parser, root_dir)
        # Add BART specific options
        parser.add_argument(
            "--max_seq_length",
            default=1024,
            type=int,
            help="The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded.",
        )

        parser.add_argument(
            "--data_dir",
            default=None,
            type=str,
            required=True,
            help="The input data dir. Should contain the dataset files for the CNN/DM summarization task.",
        )
        return parser


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    add_generic_args(parser, os.getcwd())
    parser = BartSystem.add_model_specific_args(parser, os.getcwd())
    args = parser.parse_args()

    # If output_dir not provided, a folder will be generated in pwd
    if args.output_dir is None:
        args.output_dir = os.path.join("./results", f"{args.task}_{args.model_type}_{time.strftime('%Y%m%d_%H%M%S')}",)
        os.makedirs(args.output_dir)

    model = BartSystem(args)
    trainer = generic_train(model, args)

    # Optionally, predict on dev set and write to output_dir
    if args.do_predict:
        checkpoints = list(sorted(glob.glob(os.path.join(args.output_dir, "checkpointepoch=*.ckpt"), recursive=True)))
        BartSystem.load_from_checkpoint(checkpoints[-1])
        trainer.test(model)