test_feature_extraction_clap.py 30.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import itertools
import random
import unittest

import numpy as np

from transformers import ClapFeatureExtractor
from transformers.testing_utils import require_torch, require_torchaudio
25
from transformers.trainer_utils import set_seed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
from transformers.utils.import_utils import is_torch_available

from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin


if is_torch_available():
    import torch

global_rng = random.Random()


# Copied from tests.models.whisper.test_feature_extraction_whisper.floats_list
def floats_list(shape, scale=1.0, rng=None, name=None):
    """Creates a random float32 tensor"""
    if rng is None:
        rng = global_rng

    values = []
    for batch_idx in range(shape[0]):
        values.append([])
        for _ in range(shape[1]):
            values[-1].append(rng.random() * scale)

    return values


@require_torch
@require_torchaudio
# Copied from tests.models.whisper.test_feature_extraction_whisper.WhisperFeatureExtractionTester with Whisper->Clap
class ClapFeatureExtractionTester(unittest.TestCase):
    def __init__(
        self,
        parent,
        batch_size=7,
        min_seq_length=400,
        max_seq_length=2000,
        feature_size=10,
        hop_length=160,
        chunk_length=8,
        padding_value=0.0,
        sampling_rate=4_000,
        return_attention_mask=False,
        do_normalize=True,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.min_seq_length = min_seq_length
        self.max_seq_length = max_seq_length
        self.seq_length_diff = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
        self.padding_value = padding_value
        self.sampling_rate = sampling_rate
        self.return_attention_mask = return_attention_mask
        self.do_normalize = do_normalize
        self.feature_size = feature_size
        self.chunk_length = chunk_length
        self.hop_length = hop_length

    def prepare_feat_extract_dict(self):
        return {
            "feature_size": self.feature_size,
            "hop_length": self.hop_length,
            "chunk_length": self.chunk_length,
            "padding_value": self.padding_value,
            "sampling_rate": self.sampling_rate,
            "return_attention_mask": self.return_attention_mask,
            "do_normalize": self.do_normalize,
        }

    def prepare_inputs_for_common(self, equal_length=False, numpify=False):
        def _flatten(list_of_lists):
            return list(itertools.chain(*list_of_lists))

        if equal_length:
            speech_inputs = [floats_list((self.max_seq_length, self.feature_size)) for _ in range(self.batch_size)]
        else:
            # make sure that inputs increase in size
            speech_inputs = [
                floats_list((x, self.feature_size))
                for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff)
            ]
        if numpify:
            speech_inputs = [np.asarray(x) for x in speech_inputs]
        return speech_inputs


@require_torch
@require_torchaudio
# Copied from tests.models.whisper.test_feature_extraction_whisper.WhisperFeatureExtractionTest with Whisper->Clap
class ClapFeatureExtractionTest(SequenceFeatureExtractionTestMixin, unittest.TestCase):
    feature_extraction_class = ClapFeatureExtractor

    def setUp(self):
        self.feat_extract_tester = ClapFeatureExtractionTester(self)

    def test_call(self):
        # Tests that all call wrap to encode_plus and batch_encode_plus
        feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
        # create three inputs of length 800, 1000, and 1200
        speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
        np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs]

        # Test feature size
        input_features = feature_extractor(np_speech_inputs, padding="max_length", return_tensors="np").input_features
        self.assertTrue(input_features.ndim == 4)

        # Test not batched input
        encoded_sequences_1 = feature_extractor(speech_inputs[0], return_tensors="np").input_features
        encoded_sequences_2 = feature_extractor(np_speech_inputs[0], return_tensors="np").input_features
        self.assertTrue(np.allclose(encoded_sequences_1, encoded_sequences_2, atol=1e-3))

        # Test batched
        encoded_sequences_1 = feature_extractor(speech_inputs, return_tensors="np").input_features
        encoded_sequences_2 = feature_extractor(np_speech_inputs, return_tensors="np").input_features
        for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
140
141
142
143
144
145
146
147
            self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))

        # Test 2-D numpy arrays are batched.
        speech_inputs = [floats_list((1, x))[0] for x in (800, 800, 800)]
        np_speech_inputs = np.asarray(speech_inputs)
        encoded_sequences_1 = feature_extractor(speech_inputs, return_tensors="np").input_features
        encoded_sequences_2 = feature_extractor(np_speech_inputs, return_tensors="np").input_features
        for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
            self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))

    def test_double_precision_pad(self):
        import torch

        feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
        np_speech_inputs = np.random.rand(100, 32).astype(np.float64)
        py_speech_inputs = np_speech_inputs.tolist()

        for inputs in [py_speech_inputs, np_speech_inputs]:
            np_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="np")
            self.assertTrue(np_processed.input_features.dtype == np.float32)
            pt_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="pt")
            self.assertTrue(pt_processed.input_features.dtype == torch.float32)

    def _load_datasamples(self, num_samples):
        from datasets import load_dataset

        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
        # automatic decoding with librispeech
        speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"]

        return [x["array"] for x in speech_samples]

172
    def test_integration_fusion_short_input(self):
173
174
175
176
        # fmt: off
        EXPECTED_INPUT_FEATURES = torch.tensor(
            [
                [
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
                    # "repeat"
                    [
                        -20.1049, -19.9764, -20.0731, -19.5055, -27.5018, -22.5761, -26.6071,
                        -29.0091, -26.4659, -26.4236, -28.8808, -31.9190, -32.4848, -34.1186,
                        -34.0340, -32.8803, -30.9895, -37.6238, -38.0347, -40.6263, -36.3496,
                        -42.2533, -32.9132, -27.7068, -29.3704, -30.3208, -22.5972, -27.1494,
                        -30.1975, -31.1005, -29.9372, -27.1917, -25.9806, -30.3489, -33.2380,
                        -31.9062, -36.5498, -32.8721, -30.5629, -27.4674, -22.2232, -22.5653,
                        -16.3868, -17.2713, -25.9738, -30.6256, -34.3766, -31.1292, -27.8950,
                        -27.0588, -25.6206, -23.0712, -26.6050, -28.0112, -32.6847, -34.3396,
                        -34.9738, -35.8463, -39.2324, -37.1188, -33.3705, -28.9230, -28.9112,
                        -28.6578
                    ],
                    [
                        -36.7233, -30.0587, -24.8431, -18.4611, -16.8149, -23.9319, -32.8580,
                        -34.2264, -27.4332, -26.8027, -29.2721, -33.9033, -39.3403, -35.3232,
                        -26.8076, -28.6460, -35.2780, -36.0738, -35.4996, -37.7631, -39.5056,
                        -34.7112, -36.8741, -34.1066, -32.9474, -33.6604, -27.9937, -30.9594,
                        -26.2928, -32.0485, -29.2151, -29.2917, -32.7308, -29.6542, -31.1454,
                        -37.0088, -32.3388, -37.3086, -31.1024, -27.2889, -19.6788, -21.1488,
                        -19.5144, -14.8889, -21.2006, -24.7488, -27.7940, -31.1058, -27.5068,
                        -21.5737, -22.3780, -21.5151, -26.3086, -30.9223, -33.5043, -32.0307,
                        -37.3806, -41.6188, -45.6650, -40.5131, -32.5023, -26.7385, -26.3709,
                        -26.7761
                    ]
202
203
                ],
                [
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
                    # "repeatpad"
                    [
                        -25.7496, -24.9339, -24.1357, -23.1271, -23.7853, -26.1264, -29.1456,
                        -33.2060, -37.8179, -42.4833, -41.9386, -41.2164, -42.3566, -44.2575,
                        -40.0217, -36.6794, -36.6974, -38.7819, -42.0880, -45.5560, -39.9368,
                        -36.3219, -35.5981, -36.6434, -35.1851, -33.0684, -30.0437, -30.2010,
                        -34.3476, -42.1373, -38.8039, -37.3355, -40.4576, -41.0485, -40.6377,
                        -38.2275, -42.7481, -34.6084, -34.7048, -29.5149, -26.3935, -26.8952,
                        -34.1336, -26.2904, -28.2571, -32.5642, -36.7240, -35.5334, -38.2451,
                        -34.8177, -28.9754, -25.1096, -27.9768, -32.3184, -37.0269, -40.5136,
                        -40.8061, -36.4948, -40.3767, -38.9671, -38.3552, -34.1250, -30.9035,
                        -31.6112
                    ],
                    [
                        -100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
                        -100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
                        -100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
                        -100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
                        -100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
                        -100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
                        -100., -100., -100., -100.
                    ]
226
227
                ],
                [
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
                    # None, same as "repeatpad"
                    [
                        -25.7496, -24.9339, -24.1357, -23.1271, -23.7853, -26.1264, -29.1456,
                        -33.2060, -37.8179, -42.4833, -41.9386, -41.2164, -42.3566, -44.2575,
                        -40.0217, -36.6794, -36.6974, -38.7819, -42.0880, -45.5560, -39.9368,
                        -36.3219, -35.5981, -36.6434, -35.1851, -33.0684, -30.0437, -30.2010,
                        -34.3476, -42.1373, -38.8039, -37.3355, -40.4576, -41.0485, -40.6377,
                        -38.2275, -42.7481, -34.6084, -34.7048, -29.5149, -26.3935, -26.8952,
                        -34.1336, -26.2904, -28.2571, -32.5642, -36.7240, -35.5334, -38.2451,
                        -34.8177, -28.9754, -25.1096, -27.9768, -32.3184, -37.0269, -40.5136,
                        -40.8061, -36.4948, -40.3767, -38.9671, -38.3552, -34.1250, -30.9035,
                        -31.6112
                    ],
                    [
                        -100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
                        -100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
                        -100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
                        -100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
                        -100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
                        -100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
                        -100., -100., -100., -100.
                    ]
                ],
                [
                    # "pad"
                    [
                        -58.5260, -58.1155, -57.8623, -57.5059, -57.9178, -58.7171, -59.2343,
                        -59.9833, -60.9764, -62.0722, -63.5723, -65.7111, -67.5153, -68.7088,
                        -69.8325, -70.2987, -70.1548, -70.6233, -71.5702, -72.5159, -72.3821,
                        -70.1817, -67.0315, -64.1387, -62.2202, -61.0717, -60.4951, -61.6005,
                        -63.7358, -67.1400, -67.6185, -65.5635, -64.3593, -63.7138, -63.6209,
                        -66.4950, -72.6284, -63.3961, -56.8334, -52.7319, -50.6310, -51.3728,
                        -53.5619, -51.9190, -50.9708, -52.8684, -55.8073, -58.8227, -60.6991,
                        -57.0547, -52.7611, -51.4388, -54.4892, -60.8950, -66.1024, -72.4352,
                        -67.8538, -65.1463, -68.7588, -72.3080, -68.4864, -60.4688, -57.1516,
                        -60.9460
                    ],
                    [
                        -100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
                        -100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
                        -100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
                        -100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
                        -100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
                        -100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
                        -100., -100., -100., -100.
                    ]
274
275
276
277
                ]
            ]
        )
        # fmt: on
278
        MEL_BIN = [[976, 977], [976, 977], [976, 977], [196, 197]]
279
        input_speech = self._load_datasamples(1)
280
        feature_extractor = ClapFeatureExtractor()
281
        for padding, EXPECTED_VALUES, idx_in_mel in zip(
282
            ["repeat", "repeatpad", None, "pad"], EXPECTED_INPUT_FEATURES, MEL_BIN
283
        ):
284
285
286
287
288
            input_features = feature_extractor(input_speech, return_tensors="pt", padding=padding).input_features
            self.assertEqual(input_features.shape, (1, 4, 1001, 64))

            self.assertTrue(torch.allclose(input_features[0, 0, idx_in_mel[0]], EXPECTED_VALUES[0], atol=1e-4))
            self.assertTrue(torch.allclose(input_features[0, 0, idx_in_mel[1]], EXPECTED_VALUES[1], atol=1e-4))
289

290
291
292
293
294
            self.assertTrue(torch.all(input_features[0, 0] == input_features[0, 1]))
            self.assertTrue(torch.all(input_features[0, 0] == input_features[0, 2]))
            self.assertTrue(torch.all(input_features[0, 0] == input_features[0, 3]))

    def test_integration_rand_trunc_short_input(self):
295
296
297
298
        # fmt: off
        EXPECTED_INPUT_FEATURES = torch.tensor(
            [
                [
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
                    # "repeat"
                    [
                        -35.0483, -35.7865, -38.2884, -40.0220, -42.5349, -44.9489, -43.2228,
                        -44.6499, -47.6253, -49.6983, -50.2127, -52.5483, -52.2223, -51.9157,
                        -49.4082, -51.2024, -57.0476, -56.2803, -58.1618, -60.7474, -55.0389,
                        -60.9514, -59.3080, -50.4419, -47.8172, -48.7570, -55.2552, -44.5036,
                        -44.1148, -50.8218, -51.0968, -52.9408, -51.1037, -48.9789, -47.5897,
                        -52.0915, -55.4216, -54.1529, -58.0149, -58.0866, -52.7798, -52.6154,
                        -45.9144, -46.2008, -40.7603, -41.1703, -50.2250, -55.4112, -59.4818,
                        -54.5795, -53.5552, -51.3668, -49.8358, -50.3186, -54.0452, -57.6030,
                        -61.1589, -61.6415, -63.2756, -66.5890, -62.8543, -58.0665, -56.7203,
                        -56.7632
                    ],
                    [
                        -47.1320, -37.9961, -34.0076, -36.7109, -47.9057, -48.4924, -43.8371,
                        -44.9728, -48.1689, -52.9141, -57.6077, -52.8520, -44.8502, -45.6764,
                        -51.8389, -56.4284, -54.6972, -53.4889, -55.6077, -58.7149, -60.3760,
                        -54.0136, -56.0730, -55.9870, -54.4017, -53.1094, -53.5640, -50.3064,
                        -49.9520, -49.3239, -48.1668, -53.4852, -50.4561, -50.8688, -55.1970,
                        -51.5538, -53.0260, -59.6933, -54.8183, -59.5895, -55.9589, -50.3761,
                        -44.1282, -44.1463, -43.8540, -39.1168, -45.3893, -49.5542, -53.1505,
                        -55.2870, -50.3921, -46.8511, -47.4444, -49.5633, -56.0034, -59.0815,
                        -59.0018, -63.7589, -69.5745, -71.5789, -64.0498, -56.0558, -54.3475,
                        -54.7004
                    ]
                ],
                [
                    # "repeatpad"
                    [
                        -40.3184, -39.7186, -39.8807, -41.6508, -45.3613, -50.4785, -57.0297,
                        -60.4944, -59.1642, -58.9495, -60.4661, -62.5300, -58.4759, -55.2865,
                        -54.8973, -56.0780, -57.5482, -59.6557, -64.3309, -65.0330, -59.4941,
                        -56.8552, -55.0519, -55.9817, -56.9739, -55.2827, -54.5312, -51.4141,
                        -50.4289, -51.9131, -57.5821, -63.9979, -59.9180, -58.9489, -62.3247,
                        -62.6975, -63.7948, -60.5250, -64.6107, -58.7905, -57.0229, -54.3084,
                        -49.8445, -50.4459, -57.0172, -50.6425, -52.5992, -57.4207, -61.6358,
                        -60.6540, -63.1968, -57.4360, -52.3263, -51.7695, -57.1946, -62.9610,
                        -66.7359, -67.0335, -63.7440, -68.1775, -66.3798, -62.8650, -59.8972,
                        -59.3139
                    ],
                    [
                        -100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
                        -100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
                        -100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
                        -100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
                        -100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
                        -100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
                        -100., -100., -100., -100.
                    ]
348
349
                ],
                [
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
                    # None, same as "repeatpad"
                    [
                        -40.3184, -39.7186, -39.8807, -41.6508, -45.3613, -50.4785, -57.0297,
                        -60.4944, -59.1642, -58.9495, -60.4661, -62.5300, -58.4759, -55.2865,
                        -54.8973, -56.0780, -57.5482, -59.6557, -64.3309, -65.0330, -59.4941,
                        -56.8552, -55.0519, -55.9817, -56.9739, -55.2827, -54.5312, -51.4141,
                        -50.4289, -51.9131, -57.5821, -63.9979, -59.9180, -58.9489, -62.3247,
                        -62.6975, -63.7948, -60.5250, -64.6107, -58.7905, -57.0229, -54.3084,
                        -49.8445, -50.4459, -57.0172, -50.6425, -52.5992, -57.4207, -61.6358,
                        -60.6540, -63.1968, -57.4360, -52.3263, -51.7695, -57.1946, -62.9610,
                        -66.7359, -67.0335, -63.7440, -68.1775, -66.3798, -62.8650, -59.8972,
                        -59.3139
                    ],
                    [
                        -100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
                        -100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
                        -100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
                        -100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
                        -100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
                        -100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
                        -100., -100., -100., -100.
                    ]
372
373
                ],
                [
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
                    # "pad"
                    [
                        -73.3190, -73.6349, -74.1451, -74.8539, -75.7476, -76.5438, -78.5540,
                        -80.1339, -81.8911, -83.7560, -85.5387, -86.7466, -88.2072, -88.6090,
                        -88.8243, -89.0784, -89.4364, -89.8179, -91.3146, -92.2833, -91.7221,
                        -90.9440, -88.1315, -86.2425, -84.2281, -82.4893, -81.5993, -81.1328,
                        -81.5759, -83.1068, -85.6525, -88.9520, -88.9187, -87.2703, -86.3052,
                        -85.7188, -85.8802, -87.9996, -95.0464, -88.0133, -80.8561, -76.5597,
                        -74.2816, -74.8109, -77.3615, -76.0719, -75.3426, -77.6428, -80.9663,
                        -84.5275, -84.9907, -80.5205, -77.2851, -78.6259, -84.7740, -91.4535,
                        -98.1894, -94.3872, -92.3735, -97.6807, -98.1501, -91.4344, -85.2842,
                        -88.4338
                    ],
                    [
                        -100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
                        -100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
                        -100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
                        -100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
                        -100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
                        -100., -100., -100., -100., -100., -100., -100., -100., -100., -100.,
                        -100., -100., -100., -100.
                    ]
396
397
398
399
                ]
            ]
        )
        # fmt: on
400
        MEL_BIN = [[976, 977], [976, 977], [976, 977], [196, 197]]
401
        input_speech = self._load_datasamples(1)
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
        feature_extractor = ClapFeatureExtractor()
        for padding, EXPECTED_VALUES, idx_in_mel in zip(
            ["repeat", "repeatpad", None, "pad"], EXPECTED_INPUT_FEATURES, MEL_BIN
        ):
            input_features = feature_extractor(
                input_speech, return_tensors="pt", truncation="rand_trunc", padding=padding
            ).input_features
            self.assertEqual(input_features.shape, (1, 1, 1001, 64))
            self.assertTrue(torch.allclose(input_features[0, 0, idx_in_mel[0]], EXPECTED_VALUES[0], atol=1e-4))
            self.assertTrue(torch.allclose(input_features[0, 0, idx_in_mel[1]], EXPECTED_VALUES[1], atol=1e-4))

    def test_integration_fusion_long_input(self):
        # fmt: off
        EXPECTED_INPUT_FEATURES = torch.tensor(
            [
                [
418
419
420
421
422
423
424
425
426
                    -11.1830, -10.1894, -8.6051, -4.8578, -1.3268, -8.4606, -14.5453,
                     -9.2017, 0.5781, 16.2129, 14.8289, 3.6326, -3.8794, -6.5544,
                     -2.4408, 1.9531, 6.0967, 1.7590, -7.6730, -6.1571, 2.0052,
                     16.6694, 20.6447, 21.2145, 13.4972, 15.9043, 16.8987, 4.1766,
                     11.9428, 21.2372, 12.3016, 4.8604, 6.7241, 1.8543, 4.9235,
                      5.3188, -0.9897, -1.2416, -6.5864, 2.9529, 2.9274, 6.4753,
                     10.2300, 11.2127, 3.4042, -1.0055, -6.0475, -6.7524, -3.9801,
                     -1.4434, 0.4740, -0.1584, -4.5457, -8.5746, -8.8428, -13.1475,
                     -9.6079, -8.5798, -4.1143, -3.7966, -7.1651, -6.1517, -8.0258,
427
428
429
                    -12.1486
                ],
                [
430
431
432
433
                    -10.2017, -7.9924, -5.9517, -3.9372, -1.9735, -4.3130, 16.1647,
                     25.0592, 23.5532, 14.4974, -7.0778, -10.2262, 6.4782, 20.3454,
                     19.4269, 1.7976, -16.5070, 4.9380, 12.3390, 6.9285, -13.6325,
                     -8.5298, 1.0839, -5.9629, -8.4812, 3.1331, -2.0963, -16.6046,
434
435
436
437
438
439
440
441
                    -14.0070, -17.5707, -13.2080, -17.2168, -17.7770, -12.1111, -18.6184,
                    -17.1897, -13.9801, -12.0426, -23.5400, -25.6823, -23.5813, -18.7847,
                    -20.5473, -25.6458, -19.7585, -27.6007, -28.9276, -24.8948, -25.4458,
                    -22.2807, -19.6613, -19.2669, -15.7813, -19.6821, -24.3439, -22.2598,
                    -28.2631, -30.1017, -32.7646, -33.6525, -27.5639, -22.0548, -27.8054,
                    -29.6947
                ],
                [
442
443
444
445
446
447
448
449
450
451
                    -9.2078, -7.2963, -6.2095, -7.9959, -2.9280, -11.1843, -6.1490,
                    5.0733, 19.2957, 21.4578, 14.6803, -3.3153, -6.3334, -2.3542,
                    6.9509, 15.2965, 14.6620, 5.2075, -0.0873, 1.1919, 18.1986,
                    20.8470, 10.8035, 2.2516, 7.6905, 7.7427, -1.2543, -5.0018,
                    0.9809, -2.1584, -5.4580, -5.4760, -11.8888, -9.0605, -8.4638,
                    -9.9897, -0.0540, -5.1629, 0.0483, -4.1504, -4.8140, -7.8236,
                    -9.0622, -10.1742, -8.9597, -11.5380, -16.5603, -17.1858, -17.5032,
                    -20.9326, -23.9543, -25.2602, -25.3429, -27.4536, -26.8859, -22.7852,
                    -25.8288, -24.8399, -23.8893, -24.2096, -26.5415, -23.7281, -25.6851,
                    -22.3629
452
453
                ],
                [
454
455
456
457
458
459
460
461
462
                      1.3448, 2.9883, 4.0366, -0.8019, -10.4191, -10.0883, -4.3812,
                      0.8136, 2.1579, 0.0832, 1.0949, -0.9759, -5.5319, -4.6009,
                     -6.5452, -14.9155, -20.1584, -9.3611, -2.4271, 1.4031, 4.9910,
                      8.6916, 8.6785, 10.1973, 9.9029, 5.3840, 7.5336, 5.2803,
                      2.8144, -0.3138, 2.2216, 5.7328, 7.5574, 7.7402, 1.0681,
                      3.1049, 7.0742, 6.5588, 7.3712, 5.7881, 8.6874, 8.7725,
                      2.8133, -4.5809, -6.1317, -5.1719, -5.0192, -9.0977, -10.9391,
                     -6.0769, 1.6016, -0.8965, -7.2252, -7.8632, -11.4468, -11.7446,
                    -10.7447, -7.0601, -2.7748, -4.1798, -2.8433, -3.1352, 0.8097,
463
464
465
466
467
468
469
470
471
                      6.4212
                ]
            ]
        )
        # fmt: on
        MEL_BIN = 963
        input_speech = torch.cat([torch.tensor(x) for x in self._load_datasamples(5)])
        feature_extractor = ClapFeatureExtractor()
        for padding, EXPECTED_VALUES, block_idx in zip(
472
            ["repeat", "repeatpad", None, "pad"], EXPECTED_INPUT_FEATURES, [1, 2, 0, 3]
473
474
475
476
        ):
            set_seed(987654321)
            input_features = feature_extractor(input_speech, return_tensors="pt", padding=padding).input_features
            self.assertEqual(input_features.shape, (1, 4, 1001, 64))
477
            self.assertTrue(torch.allclose(input_features[0, block_idx, MEL_BIN], EXPECTED_VALUES, atol=1e-3))
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495

    def test_integration_rand_trunc_long_input(self):
        # fmt: off
        EXPECTED_INPUT_FEATURES = torch.tensor(
            [
                [
                    -35.4022, -32.7555, -31.2004, -32.7764, -42.5770, -41.6339, -43.1630,
                    -44.5080, -44.3029, -48.9628, -39.5022, -39.2105, -43.1350, -43.2195,
                    -48.4894, -52.2344, -57.6891, -52.2228, -45.5155, -44.2893, -43.4697,
                    -46.6702, -43.7490, -40.4819, -42.7275, -46.3434, -46.8412, -41.2003,
                    -43.1681, -46.2948, -46.1925, -47.8333, -45.6812, -44.9182, -41.7786,
                    -43.3809, -44.3199, -42.8814, -45.4771, -46.7114, -46.9746, -42.7090,
                    -41.6057, -38.3965, -40.1980, -41.0263, -34.1256, -28.3289, -29.0201,
                    -30.4453, -29.5561, -30.1734, -25.9406, -19.0897, -15.8452, -20.1351,
                    -23.6515, -23.1194, -17.1845, -19.4399, -23.6527, -22.8768, -20.7279,
                    -22.7864
                ],
                [
496
497
                    -35.7719, -27.2566, -23.6964, -27.5521, 0.2510, 7.4391, 1.3917,
                    -13.3417, -28.1758, -17.0856, -5.7723, -0.8000, -7.8832, -15.5548,
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
                    -30.5935, -24.7571, -13.7009, -10.3432, -21.2464, -24.8118, -19.4080,
                    -14.9779, -11.7991, -18.4485, -20.1982, -17.3652, -20.6328, -28.2967,
                    -25.7819, -21.8962, -28.5083, -29.5719, -30.2120, -35.7033, -31.8218,
                    -34.0408, -37.7744, -33.9653, -31.3009, -30.9063, -28.6153, -32.2202,
                    -28.5456, -28.8579, -32.5170, -37.9152, -43.0052, -46.4849, -44.0786,
                    -39.1933, -33.2757, -31.6313, -42.6386, -52.3679, -53.5785, -55.6444,
                    -47.0050, -47.6459, -56.6361, -60.6781, -61.5244, -55.8272, -60.4832,
                    -58.1897
                ],
                [
                    -38.2686, -36.6285, -32.5835, -35.1693, -37.7938, -37.4035, -35.3132,
                    -35.6083, -36.3609, -40.9472, -36.7846, -36.1544, -38.9076, -39.3618,
                    -35.4953, -34.2809, -39.9466, -39.7433, -34.8347, -37.5674, -41.5689,
                    -38.9161, -34.3947, -30.2924, -30.4841, -34.5831, -28.9261, -24.8849,
                    -31.2324, -27.1622, -27.2107, -25.9385, -30.1691, -30.9223, -23.9495,
                    -25.6047, -26.7119, -28.5523, -27.7481, -32.8427, -35.4650, -31.0399,
                    -31.2073, -30.5163, -22.9819, -20.8892, -19.2510, -24.7905, -28.9426,
                    -28.1998, -26.7386, -25.0140, -27.9223, -32.9913, -33.1864, -34.9742,
                    -38.5995, -39.6990, -29.3203, -22.4697, -25.6415, -33.5608, -33.0945,
                    -27.1716
                ],
                [
520
521
522
523
524
                    -33.2015, -28.7741, -21.9457, -23.4888, -32.1072, -8.6307, 3.2724,
                      5.9157, -0.9221, -30.1814, -31.0015, -27.4508, -27.0477, -9.5342,
                      0.3221, 0.6511, -7.1596, -25.9707, -32.8924, -32.2300, -13.8974,
                     -0.4895, 0.9168, -10.7663, -27.1176, -35.0829, -11.6859, -4.8855,
                    -11.8898, -26.6167, -5.6192, -3.8443, -19.7947, -14.4101, -8.6236,
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
                    -21.2458, -21.0801, -17.9136, -24.4663, -18.6333, -24.8085, -15.5854,
                    -15.4344, -11.5046, -22.3625, -27.3387, -32.4353, -30.9670, -31.3789,
                    -35.4044, -34.4591, -25.2433, -28.0773, -33.8736, -33.0224, -33.3155,
                    -38.5302, -39.2741, -36.6395, -34.7729, -32.4483, -42.4001, -49.2857,
                    -39.1682
                ]
            ]
        )
        # fmt: on
        MEL_BIN = 963
        SEEDS = [987654321, 1234, 666, 5555]
        input_speech = torch.cat([torch.tensor(x) for x in self._load_datasamples(5)])
        feature_extractor = ClapFeatureExtractor()
        for padding, EXPECTED_VALUES, seed in zip(
            ["repeat", "repeatpad", None, "pad"], EXPECTED_INPUT_FEATURES, SEEDS
        ):
            set_seed(seed)
            input_features = feature_extractor(
543
544
                input_speech, return_tensors="pt", truncation="rand_trunc", padding=padding
            ).input_features
545
546
            self.assertEqual(input_features.shape, (1, 1, 1001, 64))
            self.assertTrue(torch.allclose(input_features[0, 0, MEL_BIN], EXPECTED_VALUES, atol=1e-4))