utils_multiple_choice.py 17.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" BERT classification fine-tuning: utilities to work with GLUE tasks """

from __future__ import absolute_import, division, print_function


import logging
import os
import sys
from io import open
import json
import csv
import glob
import tqdm


logger = logging.getLogger(__name__)


class InputExample(object):
    """A single training/test example for multiple choice"""

    def __init__(self, example_id, question,  contexts, endings, label=None):
        """Constructs a InputExample.

        Args:
            guid: Unique id for the example.
            text_a: string. The untokenized text of the first sequence. For single
            sequence tasks, only this sequence must be specified.
            text_b: (Optional) string. The untokenized text of the second sequence.
            Only must be specified for sequence pair tasks.
            label: (Optional) string. The label of the example. This should be
            specified for train and dev examples, but not for test examples.
        """
        self.example_id = example_id
        self.question = question
        self.contexts = contexts
        self.endings = endings
        self.label = label


class InputFeatures(object):
    def __init__(self,
                 example_id,
                 choices_features,
                 label

    ):
        self.example_id = example_id
        self.choices_features = [
            {
                'input_ids': input_ids,
                'input_mask': input_mask,
                'segment_ids': segment_ids
            }
            for _, input_ids, input_mask, segment_ids in choices_features
        ]
        self.label = label


class DataProcessor(object):
    """Base class for data converters for sequence classification data sets."""

    def get_train_examples(self, data_dir):
        """Gets a collection of `InputExample`s for the train set."""
        raise NotImplementedError()

    def get_dev_examples(self, data_dir):
        """Gets a collection of `InputExample`s for the dev set."""
        raise NotImplementedError()

erenup's avatar
erenup committed
86
87
88
89
    def get_test_examples(self, data_dir):
        """Gets a collection of `InputExample`s for the dev set."""
        raise NotImplementedError()

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
    def get_labels(self):
        """Gets the list of labels for this data set."""
        raise NotImplementedError()


class RaceProcessor(DataProcessor):
    """Processor for the MRPC data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
        logger.info("LOOKING AT {} train".format(data_dir))
        high = os.path.join(data_dir, 'train/high')
        middle = os.path.join(data_dir, 'train/middle')
        high = self._read_txt(high)
        middle = self._read_txt(middle)
        return self._create_examples(high + middle, 'train')

    def get_dev_examples(self, data_dir):
        """See base class."""
        logger.info("LOOKING AT {} dev".format(data_dir))
        high = os.path.join(data_dir, 'dev/high')
        middle = os.path.join(data_dir, 'dev/middle')
        high = self._read_txt(high)
        middle = self._read_txt(middle)
        return self._create_examples(high + middle, 'dev')

erenup's avatar
erenup committed
116
117
118
119
120
121
122
123
124
    def get_test_examples(self, data_dir):
        """See base class."""
        logger.info("LOOKING AT {} test".format(data_dir))
        high = os.path.join(data_dir, 'test/high')
        middle = os.path.join(data_dir, 'test/middle')
        high = self._read_txt(high)
        middle = self._read_txt(middle)
        return self._create_examples(high + middle, 'test')

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
    def get_labels(self):
        """See base class."""
        return ["0", "1", "2", "3"]

    def _read_txt(self, input_dir):
        lines = []
        files = glob.glob(input_dir + "/*txt")
        for file in tqdm.tqdm(files, desc="read files"):
            with open(file, 'r', encoding='utf-8') as fin:
                data_raw = json.load(fin)
                data_raw["race_id"] = file
                lines.append(data_raw)
        return lines


    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (_, data_raw) in enumerate(lines):
            race_id = "%s-%s" % (set_type, data_raw["race_id"])
            article = data_raw["article"]
            for i in range(len(data_raw["answers"])):
                truth = str(ord(data_raw['answers'][i]) - ord('A'))
                question = data_raw['questions'][i]
                options = data_raw['options'][i]

                examples.append(
                    InputExample(
                        example_id=race_id,
                        question=question,
                        contexts=[article, article, article, article],
                        endings=[options[0], options[1], options[2], options[3]],
                        label=truth))
        return examples

class SwagProcessor(DataProcessor):
    """Processor for the MRPC data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
        logger.info("LOOKING AT {} train".format(data_dir))
        return self._create_examples(self._read_csv(os.path.join(data_dir, "train.csv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        logger.info("LOOKING AT {} dev".format(data_dir))
        return self._create_examples(self._read_csv(os.path.join(data_dir, "val.csv")), "dev")

erenup's avatar
erenup committed
173
174
175
176
177
    def get_test_examples(self, data_dir):
        """See base class."""
        logger.info("LOOKING AT {} test".format(data_dir))
        return self._create_examples(self._read_csv(os.path.join(data_dir, "test.csv")), "test")

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
    def get_labels(self):
        """See base class."""
        return ["0", "1", "2", "3"]

    def _read_csv(self, input_file):
        with open(input_file, 'r', encoding='utf-8') as f:
            reader = csv.reader(f)
            lines = []
            for line in reader:
                if sys.version_info[0] == 2:
                    line = list(unicode(cell, 'utf-8') for cell in line)
                lines.append(line)
            return lines


    def _create_examples(self, lines, type):
        """Creates examples for the training and dev sets."""
        if type == "train" and lines[0][-1] != 'label':
            raise ValueError(
                "For training, the input file must contain a label column."
            )

        examples = [
            InputExample(
                example_id=line[2],
                question=line[5],  # in the swag dataset, the
                # common beginning of each
                # choice is stored in "sent2".
                contexts = [line[4], line[4], line[4], line[4]],
                endings = [line[7], line[8], line[9], line[10]],
                label=line[11]
            ) for line in lines[1:]  # we skip the line with the column names
        ]

        return examples


class ArcProcessor(DataProcessor):
    """Processor for the MRPC data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
        logger.info("LOOKING AT {} train".format(data_dir))
        return self._create_examples(self._read_json(os.path.join(data_dir, "train.jsonl")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        logger.info("LOOKING AT {} dev".format(data_dir))
        return self._create_examples(self._read_json(os.path.join(data_dir, "dev.jsonl")), "dev")

erenup's avatar
erenup committed
228
229
230
231
    def get_test_examples(self, data_dir):
        logger.info("LOOKING AT {} test".format(data_dir))
        return self._create_examples(self._read_json(os.path.join(data_dir, "test.jsonl")), "test")

232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
    def get_labels(self):
        """See base class."""
        return ["0", "1", "2", "3"]

    def _read_json(self, input_file):
        with open(input_file, 'r', encoding='utf-8') as fin:
            lines = fin.readlines()
            return lines


    def _create_examples(self, lines, type):
        """Creates examples for the training and dev sets."""

        def normalize(truth):
            if truth in "ABCD":
                return ord(truth) - ord("A")
            elif truth in "1234":
                return int(truth) - 1
            else:
erenup's avatar
erenup committed
251
252
                logger.info("truth ERROR! %s", str(truth))
                return None
erenup's avatar
erenup committed
253

254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
        examples = []
        three_choice = 0
        four_choice = 0
        five_choice = 0
        other_choices = 0
        for line in tqdm.tqdm(lines, desc="read arc data"):
            data_raw = json.loads(line.strip("\n"))
            if len(data_raw["question"]["choices"]) == 3:
                three_choice += 1
                continue
            elif len(data_raw["question"]["choices"]) == 5:
                five_choice += 1
                continue
            elif len(data_raw["question"]["choices"]) != 4:
                other_choices += 1
                continue
            four_choice += 1
            truth = str(normalize(data_raw["answerKey"]))
erenup's avatar
erenup committed
272
            assert truth != "None"
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
            question_choices = data_raw["question"]
            question = question_choices["stem"]
            id = data_raw["id"]
            options = question_choices["choices"]

            if len(options) == 4:
                examples.append(
                    InputExample(
                        example_id = id,
                        question=question,
                        contexts=[options[0]["para"].replace("_", ""), options[1]["para"].replace("_", ""),
                                  options[2]["para"].replace("_", ""), options[3]["para"].replace("_", "")],
                        endings=[options[0]["text"], options[1]["text"], options[2]["text"], options[3]["text"]],
                        label=truth))

        if type == "train":
            assert len(examples) > 1
            assert examples[0].label is not None
        logger.info("len examples: %s}", str(len(examples)))
        logger.info("Three choices: %s", str(three_choice))
        logger.info("Five choices: %s", str(five_choice))
        logger.info("Other choices: %s", str(other_choices))
        logger.info("four choices: %s", str(four_choice))

        return examples


def convert_examples_to_features(examples, label_list, max_seq_length,
                                 tokenizer,
                                 cls_token_at_end=False,
                                 cls_token='[CLS]',
                                 cls_token_segment_id=1,
                                 sep_token='[SEP]',
                                 sequence_a_segment_id=0,
                                 sequence_b_segment_id=1,
                                 sep_token_extra=False,
                                 pad_token_segment_id=0,
                                 pad_on_left=False,
                                 pad_token=0,
                                 mask_padding_with_zero=True):
    """ Loads a data file into a list of `InputBatch`s
        `cls_token_at_end` define the location of the CLS token:
            - False (Default, BERT/XLM pattern): [CLS] + A + [SEP] + B + [SEP]
            - True (XLNet/GPT pattern): A + [SEP] + B + [SEP] + [CLS]
        `cls_token_segment_id` define the segment id associated to the CLS token (0 for BERT, 2 for XLNet)
    """

    label_map = {label : i for i, label in enumerate(label_list)}

    features = []
    for (ex_index, example) in tqdm.tqdm(enumerate(examples), desc="convert examples to features"):
        if ex_index % 10000 == 0:
            logger.info("Writing example %d of %d" % (ex_index, len(examples)))
        choices_features = []
        for ending_idx, (context, ending) in enumerate(zip(example.contexts, example.endings)):
            tokens_a = tokenizer.tokenize(context)
            tokens_b = None
            if example.question.find("_") != -1:
                tokens_b = tokenizer.tokenize(example.question.replace("_", ending))
            else:
333
334
335
336
337
338
                tokens_b = tokenizer.tokenize(example.question)
                tokens_b += [sep_token]
                if sep_token_extra:
                    tokens_b += [sep_token]
                tokens_b += tokenizer.tokenize(ending)

339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
            special_tokens_count = 4 if sep_token_extra else 3
            _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - special_tokens_count)

            # The convention in BERT is:
            # (a) For sequence pairs:
            #  tokens:   [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
            #  type_ids:   0   0  0    0    0     0       0   0   1  1  1  1   1   1
            # (b) For single sequences:
            #  tokens:   [CLS] the dog is hairy . [SEP]
            #  type_ids:   0   0   0   0  0     0   0
            #
            # Where "type_ids" are used to indicate whether this is the first
            # sequence or the second sequence. The embedding vectors for `type=0` and
            # `type=1` were learned during pre-training and are added to the wordpiece
            # embedding vector (and position vector). This is not *strictly* necessary
            # since the [SEP] token unambiguously separates the sequences, but it makes
            # it easier for the model to learn the concept of sequences.
            #
            # For classification tasks, the first vector (corresponding to [CLS]) is
            # used as as the "sentence vector". Note that this only makes sense because
            # the entire model is fine-tuned.
            tokens = tokens_a + [sep_token]
            if sep_token_extra:
                # roberta uses an extra separator b/w pairs of sentences
                tokens += [sep_token]

            segment_ids = [sequence_a_segment_id] * len(tokens)

            if tokens_b:
                tokens += tokens_b + [sep_token]
                segment_ids += [sequence_b_segment_id] * (len(tokens_b) + 1)

            if cls_token_at_end:
                tokens = tokens + [cls_token]
                segment_ids = segment_ids + [cls_token_segment_id]
            else:
                tokens = [cls_token] + tokens
                segment_ids = [cls_token_segment_id] + segment_ids

            input_ids = tokenizer.convert_tokens_to_ids(tokens)

            # The mask has 1 for real tokens and 0 for padding tokens. Only real
            # tokens are attended to.
            input_mask = [1 if mask_padding_with_zero else 0] * len(input_ids)

            # Zero-pad up to the sequence length.
            padding_length = max_seq_length - len(input_ids)
            if pad_on_left:
                input_ids = ([pad_token] * padding_length) + input_ids
                input_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask
                segment_ids = ([pad_token_segment_id] * padding_length) + segment_ids
            else:
                input_ids = input_ids + ([pad_token] * padding_length)
                input_mask = input_mask + ([0 if mask_padding_with_zero else 1] * padding_length)
                segment_ids = segment_ids + ([pad_token_segment_id] * padding_length)

            assert len(input_ids) == max_seq_length
            assert len(input_mask) == max_seq_length
            assert len(segment_ids) == max_seq_length
            choices_features.append((tokens, input_ids, input_mask, segment_ids))
        label = label_map[example.label]

        if ex_index < 2:
            logger.info("*** Example ***")
            logger.info("race_id: {}".format(example.example_id))
            for choice_idx, (tokens, input_ids, input_mask, segment_ids) in enumerate(choices_features):
                logger.info("choice: {}".format(choice_idx))
                logger.info("tokens: {}".format(' '.join(tokens)))
                logger.info("input_ids: {}".format(' '.join(map(str, input_ids))))
                logger.info("input_mask: {}".format(' '.join(map(str, input_mask))))
                logger.info("segment_ids: {}".format(' '.join(map(str, segment_ids))))
                logger.info("label: {}".format(label))

        features.append(
            InputFeatures(
                example_id = example.example_id,
                choices_features = choices_features,
                label = label
            )
        )

    return features


def _truncate_seq_pair(tokens_a, tokens_b, max_length):
    """Truncates a sequence pair in place to the maximum length."""

    # This is a simple heuristic which will always truncate the longer sequence
    # one token at a time. This makes more sense than truncating an equal percent
    # of tokens from each, since if one sequence is very short then each token
    # that's truncated likely contains more information than a longer sequence.
    while True:
        total_length = len(tokens_a) + len(tokens_b)
        if total_length <= max_length:
            break
434
435
436
437
438
        # if len(tokens_a) > len(tokens_b):
        #     tokens_a.pop()
        # else:
        #     tokens_b.pop()
        tokens_a.pop()
439
440
441
442
443
444
445
446
447
448
449
450
451
452


processors = {
    "race": RaceProcessor,
    "swag": SwagProcessor,
    "arc": ArcProcessor
}


GLUE_TASKS_NUM_LABELS = {
    "race", 4,
    "swag", 4,
    "arc", 4
}