run_clm.py 23 KB
Newer Older
Matt's avatar
Matt committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
17
Fine-tuning the library models for causal language modeling (GPT-2, GPT-Neo...)
Matt's avatar
Matt committed
18
19
20
on a text file or a dataset without using HuggingFace Trainer.

Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
21
https://huggingface.co/models?filter=text-generation
Matt's avatar
Matt committed
22
"""
23
# You can also adapt this script on your own clm task. Pointers for this are left as comments.
Matt's avatar
Matt committed
24
25
26
27
28
29
30
31

# region Imports
import logging
import math
import os
import random
import sys
from dataclasses import dataclass, field
32
from itertools import chain
Matt's avatar
Matt committed
33
34
35
36
37
38
from pathlib import Path
from typing import Optional

import datasets
import tensorflow as tf
from datasets import load_dataset
39
from sklearn.model_selection import train_test_split
Matt's avatar
Matt committed
40
41
42
43
44
45

import transformers
from transformers import (
    CONFIG_MAPPING,
    CONFIG_NAME,
    TF2_WEIGHTS_NAME,
46
    TF_MODEL_FOR_CAUSAL_LM_MAPPING,
Matt's avatar
Matt committed
47
48
    AutoConfig,
    AutoTokenizer,
Joao Gante's avatar
Joao Gante committed
49
    DefaultDataCollator,
Matt's avatar
Matt committed
50
51
52
53
54
55
    HfArgumentParser,
    TFAutoModelForCausalLM,
    TFTrainingArguments,
    create_optimizer,
    set_seed,
)
56
from transformers.utils import send_example_telemetry
Matt's avatar
Matt committed
57
58
59
60
from transformers.utils.versions import require_version


logger = logging.getLogger(__name__)
61
62
require_version("datasets>=1.8.0", "To fix: pip install -r examples/tensorflow/language-modeling/requirements.txt")
MODEL_CONFIG_CLASSES = list(TF_MODEL_FOR_CAUSAL_LM_MAPPING.keys())
Matt's avatar
Matt committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
# endregion


# region Command-line arguments
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
    """

    model_name_or_path: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
77
78
79
            "help": (
                "The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."
            )
Matt's avatar
Matt committed
80
81
82
83
84
85
86
87
88
        },
    )
    model_type: Optional[str] = field(
        default=None,
        metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
    )
    config_overrides: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
89
90
91
92
            "help": (
                "Override some existing default config settings when a model is trained from scratch. Example: "
                "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
            )
Matt's avatar
Matt committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
        },
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
116
117
118
119
            "help": (
                "Will use the token generated when running `transformers-cli login` (necessary to use this script "
                "with private models)."
            )
Matt's avatar
Matt committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
        },
    )

    def __post_init__(self):
        if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
            raise ValueError(
                "--config_overrides can't be used in combination with --config_name or --model_name_or_path"
            )


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
    validation_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
    validation_split_percentage: Optional[int] = field(
        default=5,
        metadata={
            "help": "The percentage of the train set used as validation set in case there's no validation split"
        },
    )
156
    block_size: Optional[int] = field(
Matt's avatar
Matt committed
157
158
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
159
160
161
162
163
            "help": (
                "Optional input sequence length after tokenization. "
                "The training dataset will be truncated in block of this size for training. "
                "Default to the model max input length for single sentence inputs (take into account special tokens)."
            )
Matt's avatar
Matt committed
164
165
166
167
168
169
170
171
172
173
174
175
176
        },
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    line_by_line: bool = field(
        default=False,
        metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."},
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
177
178
179
180
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
Matt's avatar
Matt committed
181
182
183
184
185
        },
    )
    max_eval_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
186
187
188
189
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
Matt's avatar
Matt committed
190
191
        },
    )
192
    keep_linebreaks: bool = field(
193
        default=True, metadata={"help": "Whether to keep line breaks when using TXT files or not."}
194
    )
Matt's avatar
Matt committed
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."


# endregion

# region Helper classes
class SavePretrainedCallback(tf.keras.callbacks.Callback):
    # Hugging Face models have a save_pretrained() method that saves both the weights and the necessary
    # metadata to allow them to be loaded as a pretrained model in future. This is a simple Keras callback
    # that saves the model with this method after each epoch.
    def __init__(self, output_dir, **kwargs):
        super().__init__()
        self.output_dir = output_dir

    def on_epoch_end(self, epoch, logs=None):
        self.model.save_pretrained(self.output_dir)


# endregion


def main():
    # region Argument Parsing
    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

236
237
238
239
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_clm", model_args, data_args, framework="tensorflow")

Matt's avatar
Matt committed
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
    # Sanity checks
    if data_args.dataset_name is None and data_args.train_file is None and data_args.validation_file is None:
        raise ValueError("Need either a dataset name or a training/validation file.")
    else:
        if data_args.train_file is not None:
            extension = data_args.train_file.split(".")[-1]
            assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, json or txt file."
        if data_args.validation_file is not None:
            extension = data_args.validation_file.split(".")[-1]
            assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, json or txt file."

    if training_args.output_dir is not None:
        training_args.output_dir = Path(training_args.output_dir)
        os.makedirs(training_args.output_dir, exist_ok=True)
    # endregion

    # region Checkpoints
    # Detecting last checkpoint.
    checkpoint = None
    if len(os.listdir(training_args.output_dir)) > 0 and not training_args.overwrite_output_dir:
        config_path = training_args.output_dir / CONFIG_NAME
        weights_path = training_args.output_dir / TF2_WEIGHTS_NAME
        if config_path.is_file() and weights_path.is_file():
            checkpoint = training_args.output_dir
            logger.info(
                f"Checkpoint detected, resuming training from checkpoint in {training_args.output_dir}. To avoid this"
                " behavior, change the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )
        else:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to continue regardless."
            )

    # endregion

    # region Setup logging
    # accelerator.is_local_main_process is only True for one process per machine.
    logger.setLevel(logging.INFO)
    datasets.utils.logging.set_verbosity_warning()
    transformers.utils.logging.set_verbosity_info()
    # endregion

    # If passed along, set the training seed now.
    if training_args.seed is not None:
        set_seed(training_args.seed)

    # region Load datasets
    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
299
300
301
302
303
        raw_datasets = load_dataset(
            data_args.dataset_name,
            data_args.dataset_config_name,
            use_auth_token=True if model_args.use_auth_token else None,
        )
Matt's avatar
Matt committed
304
305
306
307
308
        if "validation" not in raw_datasets.keys():
            raw_datasets["validation"] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[:{data_args.validation_split_percentage}%]",
309
                use_auth_token=True if model_args.use_auth_token else None,
Matt's avatar
Matt committed
310
311
312
313
314
            )
            raw_datasets["train"] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[{data_args.validation_split_percentage}%:]",
315
                use_auth_token=True if model_args.use_auth_token else None,
Matt's avatar
Matt committed
316
317
318
            )
    else:
        data_files = {}
319
        dataset_args = {}
Matt's avatar
Matt committed
320
321
322
323
324
325
326
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
        extension = data_args.train_file.split(".")[-1]
        if extension == "txt":
            extension = "text"
327
            dataset_args["keep_linebreaks"] = data_args.keep_linebreaks
328
329
330
331
332
333
        raw_datasets = load_dataset(
            extension,
            data_files=data_files,
            use_auth_token=True if model_args.use_auth_token else None,
            **dataset_args,
        )
Matt's avatar
Matt committed
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.
    # endregion

    # region Load pretrained model and tokenizer
    #
    # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    if model_args.config_name:
        config = AutoConfig.from_pretrained(model_args.config_name)
    elif model_args.model_name_or_path:
        config = AutoConfig.from_pretrained(model_args.model_name_or_path)
    else:
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning("You are instantiating a new config instance from scratch.")

    if model_args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name)
    elif model_args.model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path)
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )
    # endregion

    # region Dataset preprocessing
    # First we tokenize all the texts.
    column_names = raw_datasets["train"].column_names
    text_column_name = "text" if "text" in column_names else column_names[0]

    def tokenize_function(examples):
        return tokenizer(examples[text_column_name])

    tokenized_datasets = raw_datasets.map(
        tokenize_function,
        batched=True,
        num_proc=data_args.preprocessing_num_workers,
        remove_columns=column_names,
        load_from_cache_file=not data_args.overwrite_cache,
        desc="Running tokenizer on dataset",
    )

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
    if data_args.block_size is None:
        block_size = tokenizer.model_max_length
        if block_size > 1024:
            logger.warning(
                f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
                "Picking 1024 instead. You can change that default value by passing --block_size xxx."
            )
            block_size = 1024
    else:
        if data_args.block_size > tokenizer.model_max_length:
            logger.warning(
                f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model"
                f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}."
            )
        block_size = min(data_args.block_size, tokenizer.model_max_length)
Matt's avatar
Matt committed
393
394
395
396

    # Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
    def group_texts(examples):
        # Concatenate all texts.
397
        concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
Matt's avatar
Matt committed
398
399
400
        total_length = len(concatenated_examples[list(examples.keys())[0]])
        # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
        # customize this part to your needs.
401
402
        if total_length >= block_size:
            total_length = (total_length // block_size) * block_size
Matt's avatar
Matt committed
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
        # Split by chunks of max_len.
        result = {
            k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
            for k, t in concatenated_examples.items()
        }
        result["labels"] = result["input_ids"].copy()
        return result

    # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder
    # for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower
    # to preprocess.
    #
    # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
    # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map

    lm_datasets = tokenized_datasets.map(
        group_texts,
        batched=True,
        num_proc=data_args.preprocessing_num_workers,
        load_from_cache_file=not data_args.overwrite_cache,
        desc=f"Grouping texts in chunks of {block_size}",
    )

    train_dataset = lm_datasets["train"]
427
428
429
430
    if data_args.validation_file is not None:
        eval_dataset = lm_datasets["validation"]
    else:
        logger.info(
Sylvain Gugger's avatar
Sylvain Gugger committed
431
432
            f"Validation file not found: using {data_args.validation_split_percentage}% of the dataset as validation"
            " as provided in data_args"
433
434
        )
        train_indices, val_indices = train_test_split(
435
            list(range(len(train_dataset))), test_size=data_args.validation_split_percentage / 100
436
437
438
439
        )

        eval_dataset = train_dataset.select(val_indices)
        train_dataset = train_dataset.select(train_indices)
Matt's avatar
Matt committed
440
441

    if data_args.max_train_samples is not None:
442
443
        max_train_samples = min(len(train_dataset), data_args.max_train_samples)
        train_dataset = train_dataset.select(range(max_train_samples))
Matt's avatar
Matt committed
444
    if data_args.max_eval_samples is not None:
445
446
        max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
        eval_dataset = eval_dataset.select(range(max_eval_samples))
Matt's avatar
Matt committed
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467

    # Log a few random samples from the training set:
    for index in random.sample(range(len(train_dataset)), 3):
        logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
    # endregion

    with training_args.strategy.scope():
        # region Prepare model
        if checkpoint is not None:
            model = TFAutoModelForCausalLM.from_pretrained(checkpoint, config=config)
        elif model_args.model_name_or_path:
            model = TFAutoModelForCausalLM.from_pretrained(model_args.model_name_or_path, config=config)
        else:
            logger.info("Training new model from scratch")
            model = TFAutoModelForCausalLM.from_config(config)

        model.resize_token_embeddings(len(tokenizer))
        # endregion

        # region TF Dataset preparation
        num_replicas = training_args.strategy.num_replicas_in_sync
Joao Gante's avatar
Joao Gante committed
468
        data_collator = DefaultDataCollator(return_tensors="tf")
Matt's avatar
Matt committed
469
470
        options = tf.data.Options()
        options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.OFF
Joao Gante's avatar
Joao Gante committed
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488

        tf_train_dataset = train_dataset.to_tf_dataset(
            # labels are passed as input, as we will use the model's internal loss
            columns=[col for col in train_dataset.features if col != "special_tokens_mask"],
            shuffle=True,
            batch_size=num_replicas * training_args.per_device_train_batch_size,
            collate_fn=data_collator,
            drop_remainder=True,
        ).with_options(options)

        tf_eval_dataset = eval_dataset.to_tf_dataset(
            # labels are passed as input, as we will use the model's internal loss
            columns=[col for col in eval_dataset.features if col != "special_tokens_mask"],
            shuffle=False,
            batch_size=num_replicas * training_args.per_device_train_batch_size,
            collate_fn=data_collator,
            drop_remainder=True,
        ).with_options(options)
Matt's avatar
Matt committed
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
        # endregion

        # region Optimizer and loss
        batches_per_epoch = len(train_dataset) // (num_replicas * training_args.per_device_train_batch_size)
        # Bias and layernorm weights are automatically excluded from the decay
        optimizer, lr_schedule = create_optimizer(
            init_lr=training_args.learning_rate,
            num_train_steps=int(training_args.num_train_epochs * batches_per_epoch),
            num_warmup_steps=training_args.warmup_steps,
            adam_beta1=training_args.adam_beta1,
            adam_beta2=training_args.adam_beta2,
            adam_epsilon=training_args.adam_epsilon,
            weight_decay_rate=training_args.weight_decay,
        )

Joao Gante's avatar
Joao Gante committed
504
505
        # no user-specified loss = will use the model internal loss
        model.compile(optimizer=optimizer)
Matt's avatar
Matt committed
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
        # endregion

        # region Training and validation
        logger.info("***** Running training *****")
        logger.info(f"  Num examples = {len(train_dataset)}")
        logger.info(f"  Num Epochs = {training_args.num_train_epochs}")
        logger.info(f"  Instantaneous batch size per device = {training_args.per_device_train_batch_size}")
        logger.info(f"  Total train batch size = {training_args.per_device_train_batch_size * num_replicas}")

        history = model.fit(
            tf_train_dataset,
            validation_data=tf_eval_dataset,
            epochs=int(training_args.num_train_epochs),
            steps_per_epoch=len(train_dataset) // (training_args.per_device_train_batch_size * num_replicas),
            callbacks=[SavePretrainedCallback(output_dir=training_args.output_dir)],
        )
        try:
            train_perplexity = math.exp(history.history["loss"][-1])
        except OverflowError:
            train_perplexity = math.inf
        try:
            validation_perplexity = math.exp(history.history["val_loss"][-1])
        except OverflowError:
            validation_perplexity = math.inf
        logger.info(f"  Final train loss: {history.history['loss'][-1]:.3f}")
        logger.info(f"  Final train perplexity: {train_perplexity:.3f}")
        logger.info(f"  Final validation loss: {history.history['val_loss'][-1]:.3f}")
        logger.info(f"  Final validation perplexity: {validation_perplexity:.3f}")
        # endregion

        if training_args.output_dir is not None:
            model.save_pretrained(training_args.output_dir)

    if training_args.push_to_hub:
        # You'll probably want to include some of your own metadata here!
        model.push_to_hub()


if __name__ == "__main__":
    main()