04-onnx-export.ipynb 56.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "jBasof3bv1LB"
   },
   "source": [
    "<h1><center>How to export 馃 Transformers Models to ONNX ?<h1><center>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "[ONNX](http://onnx.ai/) is open format for machine learning models. It allows to save your neural network's computation graph in a framework agnostic way, which might be particulary helpful when deploying deep learning models.\n",
    "\n",
    "Indeed, businesses might have other requirements _(languages, hardware, ...)_ for which the training framework might not be the best suited in inference scenarios. In that context, having a representation of the actual computation graph that can be shared accross various business units and logics across an organization might be a desirable component.\n",
    "\n",
    "Along with the serialization format, ONNX also provides a runtime library which allows efficient and hardware specific execution of the ONNX graph. This is done through the [onnxruntime](https://microsoft.github.io/onnxruntime/) project and already includes collaborations with many hardware vendors to seamlessly deploy models on various platforms.\n",
    "\n",
    "Through this notebook we'll walk you through the process to convert a PyTorch or TensorFlow transformers model to the [ONNX](http://onnx.ai/) and leverage [onnxruntime](https://microsoft.github.io/onnxruntime/) to run inference tasks on models from  馃 __transformers__"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "yNnbrSg-5e1s"
   },
   "source": [
    "## Exporting 馃 transformers model to ONNX\n",
    "\n",
    "---\n",
    "\n",
    "Exporting models _(either PyTorch or TensorFlow)_ is easily achieved through the conversion tool provided as part of 馃 __transformers__ repository. \n",
    "\n",
    "Under the hood the process is sensibly the following: \n",
    "\n",
    "1. Allocate the model from transformers (**PyTorch or TensorFlow**)\n",
    "2. Forward dummy inputs through the model this way **ONNX** can record the set of operations executed\n",
    "3. Optionally define dynamic axes on input and output tensors\n",
    "4. Save the graph along with the network parameters"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "scrolled": false
   },
   "outputs": [],
   "source": [
55
    "!pip install --upgrade git+https://github.com/huggingface/transformers"
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "PwAaOchY4N2-"
   },
   "outputs": [],
   "source": [
    "!rm -rf onnx/\n",
    "from transformers.convert_graph_to_onnx import convert\n",
    "\n",
    "# Handles all the above steps for you\n",
    "convert(framework=\"pt\", model=\"bert-base-cased\", output=\"onnx/bert-base-cased.onnx\", opset=11)\n",
    "\n",
    "# Tensorflow \n",
    "# convert(framework=\"tf\", model=\"bert-base-cased\", output=\"onnx/bert-base-cased.onnx\", opset=11)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## How to leverage runtime for inference over an ONNX graph\n",
    "\n",
    "---\n",
    "\n",
    "As mentionned in the introduction, **ONNX** is a serialization format and many side projects can load the saved graph and run the actual computations from it. Here, we'll focus on the official [onnxruntime](https://microsoft.github.io/onnxruntime/). The runtime is implemented in C++ for performance reasons and provides API/Bindings for C++, C, C#, Java and Python.\n",
    "\n",
    "In the case of this notebook, we will use the Python API to highlight how to load a serialized **ONNX** graph and run inference workload on various backends through **onnxruntime**.\n",
    "\n",
    "**onnxruntime** is available on pypi:\n",
    "\n",
    "- onnxruntime: ONNX + MLAS (Microsoft Linear Algebra Subprograms)\n",
    "- onnxruntime-gpu: ONNX + MLAS + CUDA\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [],
   "source": [
    "!pip install transformers onnxruntime-gpu onnx psutil matplotlib"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "-gP08tHfBvgY"
   },
   "source": [
    "## Preparing for an Inference Session\n",
    "\n",
    "---\n",
    "\n",
    "Inference is done using a specific backend definition which turns on hardware specific optimizations of the graph. \n",
    "\n",
    "Optimizations are basically of three kinds: \n",
    "\n",
    "- **Constant Folding**: Convert static variables to constants in the graph \n",
    "- **Deadcode Elimination**: Remove nodes never accessed in the graph\n",
    "- **Operator Fusing**: Merge multiple instruction into one (Linear -> ReLU can be fused to be LinearReLU)\n",
    "\n",
128
129
130
    "ONNX Runtime automatically applies most optimizations by setting specific `SessionOptions`.\n",
    "\n",
    "Note:Some of the latest optimizations that are not yet integrated into ONNX Runtime are available in [optimization script](https://github.com/microsoft/onnxruntime/tree/master/onnxruntime/python/tools/transformers) that tunes models for the best performance."
131
132
   ]
  },
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
  {
   "cell_type": "code",
   "execution_count": null,
   "outputs": [],
   "source": [
    "# # An optional step unless\n",
    "# # you want to get a model with mixed precision for perf accelartion on newer GPU\n",
    "# # or you are working with Tensorflow(tf.keras) models or pytorch models other than bert\n",
    "\n",
    "# !pip install onnxruntime-tools\n",
    "# from onnxruntime_tools import optimizer\n",
    "\n",
    "# # Mixed precision conversion for bert-base-cased model converted from Pytorch\n",
    "# optimized_model = optimizer.optimize_model(\"bert-base-cased.onnx\", model_type='bert', num_heads=12, hidden_size=768)\n",
    "# optimized_model.convert_model_float32_to_float16()\n",
    "# optimized_model.save_model_to_file(\"bert-base-cased.onnx\")\n",
    "\n",
    "# # optimizations for bert-base-cased model converted from Tensorflow(tf.keras)\n",
    "# optimized_model = optimizer.optimize_model(\"bert-base-cased.onnx\", model_type='bert_keras', num_heads=12, hidden_size=768)\n",
    "# optimized_model.save_model_to_file(\"bert-base-cased.onnx\")\n"
   ],
   "metadata": {
    "collapsed": false,
    "pycharm": {
     "name": "#%%\n"
    }
   }
  },
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [],
   "source": [
    "from os import environ\n",
    "from psutil import cpu_count\n",
    "\n",
    "# Constants from the performance optimization available in onnxruntime\n",
    "# It needs to be done before importing onnxruntime\n",
    "environ[\"OMP_NUM_THREADS\"] = str(cpu_count(logical=True))\n",
    "environ[\"OMP_WAIT_POLICY\"] = 'ACTIVE'\n",
    "\n",
    "from onnxruntime import InferenceSession, SessionOptions, get_all_providers"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "2k-jHLfdcTFS"
   },
   "outputs": [],
   "source": [
    "def create_model_for_provider(model_path: str, provider: str) -> InferenceSession: \n",
    "  \n",
    "  assert provider in get_all_providers(), f\"provider {provider} not found, {get_all_providers()}\"\n",
    "\n",
196
    "  # Few properties that might have an impact on performances (provided by MS)\n",
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
    "  options = SessionOptions()\n",
    "  options.intra_op_num_threads = 1\n",
    "\n",
    "  # Load the model as a graph and prepare the CPU backend \n",
    "  return InferenceSession(model_path, options, providers=[provider])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "teJdG3amE-hR"
   },
   "source": [
    "## Forwarding through our optimized ONNX model running on CPU\n",
    "\n",
    "---\n",
    "\n",
    "When the model is loaded for inference over a specific provider, for instance **CPUExecutionProvider** as above, an optimized graph can be saved. This graph will might include various optimizations, and you might be able to see some **higher-level** operations in the graph _(through [Netron](https://github.com/lutzroeder/Netron) for instance)_ such as:\n",
    "- **EmbedLayerNormalization**\n",
    "- **Attention**\n",
    "- **FastGeLU**\n",
    "\n",
    "These operations are an example of the kind of optimization **onnxruntime** is doing, for instance here gathering multiple operations into bigger one _(Operator Fusing)_."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 34
    },
    "colab_type": "code",
    "id": "dmC22kJfVGYe",
    "outputId": "f3aba5dc-15c0-4f82-b38c-1bbae1bf112e"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Sequence output: (1, 6, 768), Pooled output: (1, 768)\n"
     ]
    }
   ],
   "source": [
    "from transformers import BertTokenizerFast\n",
    "\n",
    "tokenizer = BertTokenizerFast.from_pretrained(\"bert-base-cased\")\n",
    "cpu_model = create_model_for_provider(\"onnx/bert-base-cased.onnx\", \"CPUExecutionProvider\")\n",
    "\n",
    "# Inputs are provided through numpy array\n",
251
    "model_inputs = tokenizer(\"My name is Bert\", return_tensors=\"pt\")\n",
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
    "inputs_onnx = {k: v.cpu().detach().numpy() for k, v in model_inputs.items()}\n",
    "\n",
    "# Run the model (None = get all the outputs)\n",
    "sequence, pooled = cpu_model.run(None, inputs_onnx)\n",
    "\n",
    "# Print information about outputs\n",
    "\n",
    "print(f\"Sequence output: {sequence.shape}, Pooled output: {pooled.shape}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "Kda1e7TkEqNR"
   },
   "source": [
    "## Benchmarking different CPU & GPU providers\n",
    "\n",
    "_**Disclamer: results may vary from the actual hardware used to run the model**_"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 170
    },
    "colab_type": "code",
    "id": "WcdFZCvImVig",
    "outputId": "bfd779a1-0bc7-42db-8587-e52a485ec5e3"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Doing GPU inference on TITAN RTX\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Warming up: 100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅| 10/10 [00:00<00:00, 333.82it/s]\n",
      "Tracking inference time on CUDAExecutionProvider: 100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅| 100/100 [00:00<00:00, 521.76it/s]\n",
      "Warming up: 100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅| 10/10 [00:00<00:00, 62.95it/s]\n",
      "Tracking inference time on CPUExecutionProvider: 100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅| 100/100 [00:01<00:00, 68.65it/s]\n",
      "Warming up: 100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅| 10/10 [00:00<00:00, 69.72it/s]\n",
      "Tracking inference time on TensorrtExecutionProvider: 100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅| 100/100 [00:01<00:00, 71.31it/s]\n",
      "Warming up: 100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅| 10/10 [00:00<00:00, 66.28it/s]\n",
      "Tracking inference time on DnnlExecutionProvider: 100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅| 100/100 [00:01<00:00, 72.03it/s]\n"
     ]
    }
   ],
   "source": [
    "from torch.cuda import get_device_name\n",
    "from contextlib import contextmanager\n",
    "from dataclasses import dataclass\n",
    "from time import time\n",
    "from tqdm import trange\n",
    "\n",
    "print(f\"Doing GPU inference on {get_device_name(0)}\", flush=True)\n",
    "\n",
    "@contextmanager\n",
    "def track_infer_time(buffer: [int]):\n",
    "    start = time()\n",
    "    yield\n",
    "    end = time()\n",
    "\n",
    "    buffer.append(end - start)\n",
    "\n",
    "\n",
    "@dataclass\n",
    "class OnnxInferenceResult:\n",
    "  model_inference_time: [int]  \n",
    "  optimized_model_path: str\n",
    "\n",
    "\n",
    "# All the providers we'll be using in the test\n",
    "results = {}\n",
    "providers = [\n",
    "  \"CUDAExecutionProvider\",\n",
    "  \"CPUExecutionProvider\",            \n",
    "  \"TensorrtExecutionProvider\",\n",
    "  \"DnnlExecutionProvider\",          \n",
    "]\n",
    "\n",
    "# Iterate over all the providers\n",
    "for provider in providers:\n",
    "\n",
    "  # Create the model with the specified provider\n",
    "  model = create_model_for_provider(\"onnx/bert-base-cased.onnx\", provider)\n",
    "\n",
    "  # Keep track of the inference time\n",
    "  time_buffer = []\n",
    "\n",
    "  # Warm up the model\n",
    "  for _ in trange(10, desc=\"Warming up\"):\n",
    "    model.run(None, inputs_onnx)\n",
    "\n",
    "  # Compute \n",
    "  for _ in trange(100, desc=f\"Tracking inference time on {provider}\"):\n",
    "    with track_infer_time(time_buffer):\n",
    "      model.run(None, inputs_onnx)\n",
    "\n",
    "  # Store the result\n",
    "  results[provider] = OnnxInferenceResult(\n",
    "      time_buffer,\n",
    "      model.get_session_options().optimized_model_filepath\n",
    "  )"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 51
    },
    "colab_type": "code",
    "id": "PS_49goe197g",
    "outputId": "0ef0f70c-f5a7-46a0-949a-1a93f231d193"
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Warming up: 100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅| 10/10 [00:00<00:00, 18.04it/s]\n",
      "Tracking inference time on PyTorch: 100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅| 100/100 [00:05<00:00, 18.88it/s]\n"
     ]
    }
   ],
   "source": [
    "from transformers import BertModel\n",
    "\n",
    "# Add PyTorch to the providers\n",
    "model_pt = BertModel.from_pretrained(\"bert-base-cased\")\n",
    "for _ in trange(10, desc=\"Warming up\"):\n",
    "  model_pt(**model_inputs)\n",
    "\n",
    "# Compute \n",
    "time_buffer = []\n",
    "for _ in trange(100, desc=f\"Tracking inference time on PyTorch\"):\n",
    "  with track_infer_time(time_buffer):\n",
    "    model_pt(**model_inputs)\n",
    "\n",
    "# Store the result\n",
    "results[\"Pytorch\"] = OnnxInferenceResult(\n",
    "    time_buffer, \n",
    "    model.get_session_options().optimized_model_filepath\n",
    ") "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Show the inference performance of each providers \n",
    "\n",
    "_Note: PyTorch model benchmark is run on CPU_"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 676
    },
    "colab_type": "code",
    "id": "dj-rS8AcqRZQ",
    "outputId": "b4bf07d1-a7b4-4eff-e6bd-d5d424fd17fb"
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABRoAAAPeCAYAAABjjKazAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd5SU5d34/88sZZe2gIBABAHBgjWICYIKqFhBJKKAGoOFkMRYwBgjMRGJKIpGUaOiMQ+xrAELEDSPgkY0FuyxRKOiAeVBBUQBqSI73z/87fwYdqnX6oJ5vc7Zc3avuWfua+4pR97eJZPNZrMBAAAAAJCgoKonAAAAAABs+4RGAAAAACCZ0AgAAAAAJBMaAQAAAIBkQiMAAAAAkExoBAAAAACSCY0AAAAAQDKhEQAAAABIJjQCAAAAAMmERgBgm9K6des49dRTt/j+V111Vey0005RrVq1+O53v1t5E/sWefzxxyOTycTjjz9e1VPJs3Tp0th+++2jpKTkG13vhRdeGJ06ddqs+3zb32dl75H77ruvqqdSaf785z9HJpOJ2bNnb3TZ1O8hAPi2EhoBYCt00003RSaT2ey4wYZNmzYtLrjggjjggANi3Lhxcfnll1f1lKrUTTfdFH/+85+rehqb7Lrrrot69erFgAEDvtH1DhkyJF599dWYMmXKJi3vfQYA/LeqXtUTAADKKykpidatW8fzzz8f7777brRr166qp7TVePvtt6OgYMv+X+ljjz0WBQUF8ac//Slq1qxZyTPb9tx0003RuHHjcntmde3aNVasWLFVbaPVq1fHddddF0OHDo1q1ap9o+tu1qxZHHvssXH11VdH7969N7q899m26ZRTTokBAwZEYWFhVU8FALZZ9mgEgK3MrFmz4plnnolrrrkmmjRp8o0fJhoRUVpaGitXrvzG17spCgsLo0aNGlt03/nz50etWrUqNf4sX7680h5ra1FQUBBFRUVbHHS/Dg8++GAsWLAg+vXrVyXr79evXzz11FPxn//8Z6PLVvb7LJvNxooVKyrlsb4Nvq7vp2rVqkVRUVFkMplKf+wN+fLLL+OLL774RtcJAF+Xree/HgGAiPhqb8aGDRtGz5494/jjj88LjatXr47tttsuTjvttHL3W7JkSRQVFcX555+fG1u1alUMHz482rVrF4WFhdGyZcu44IILYtWqVXn3zWQycdZZZ0VJSUnsscceUVhYGA8//HBERFx99dXRpUuXaNSoUdSqVSs6duxY4XnZVqxYEeecc040btw46tWrF7179465c+dGJpOJSy65JG/ZuXPnxumnnx5NmzaNwsLC2GOPPeJ//ud/Nmn7rHtutLLzqj399NNx3nnnRZMmTaJOnTrxgx/8IBYsWJD3HMeNGxfLli2LTCYTmUwm77Dhu+66Kzp27Bi1atWK7bbbLgYMGBBz5szJW3f37t1jzz33jJdeeim6du0atWvXjl//+tdbtK0nT54ce+65Z+75l23vdbfTGWecEd/5zneisLAw2rRpEz/72c/yosSiRYtiyJAh0bJlyygsLIx27drFlVdeGaWlpRvdjm+88UY88cQTue3RvXv3iKj4HI1lz/21116Lbt26Re3ataNdu3a598ITTzwRnTp1ilq1asWuu+4ajz76aIXPZ0tf98mTJ0fr1q2jbdu2eeOnnnpq1K1bNz744IPo1atX1K1bN3bYYYe48cYbIyLi9ddfj0MOOSTq1KkTrVq1irvvvjvv/qtXr44RI0bEzjvvHEVFRdGoUaM48MAD45FHHslbrkePHhER8de//nWD89zQ++zLL7+MSy+9NNq2bRuFhYXRunXr+PWvf13uPdK6devo1atXTJ06Nfbbb7+oVatW3HLLLRtc73PPPRdHHnlk1K9fP2rXrh3dunWLp59+Om+Z999/P84888zYddddo1atWtGoUaM44YQTKjwn4aJFi2Lo0KHRunXrKCwsjBYtWsSPfvSj+OSTT/KWKy0tjcsuuyxatGgRRUVFceihh8a77767wblGRFxyySWRyWTirbfein79+kVxcXE0atQozj333HIRcUPfT//85z/jqKOOiuLi4qhbt24ceuih8eyzz+bu++KLL0Ymk4nbb7+93BymTp0amUwmHnzwwYio+ByN2Ww2Ro4cGS1atIjatWvHwQcfHG+88UaFz2lTPouzZ8+OTCYTV199dYwZMyb3XnjzzTc3us0AYFvg0GkA2MqUlJTEcccdFzVr1owTTzwxbr755njhhRfie9/7XtSoUSN+8IMfxMSJE+OWW27J22Nq8uTJsWrVqtz560pLS6N3797x1FNPxeDBg6N9+/bx+uuvx7XXXhvvvPNOTJ48OW+9jz32WNxzzz1x1llnRePGjaN169YR8dV58Xr37h0nn3xyfPHFFzF+/Pg44YQT4sEHH4yePXvm7n/qqafGPffcE6ecckrsv//+8cQTT+TdXmbevHmx//775+JBkyZN4qGHHoozzjgjlixZEkOGDNmi7Xb22WdHw4YNY/jw4TF79uwYM2ZMnHXWWTFhwoSIiLjzzjvj1ltvjeeffz5uu+22iIjo0qVLRERcdtll8dvf/jb69esXgwYNigULFsQNN9wQXbt2jX/+85/RoEGD3HoWLlwYRx11VAwYMCB++MMfRtOmTTd7Wz/11FMxceLEOPPMM6NevXpx/fXXR9++feODDz6IRo0aRUTEhx9+GN///vdj0aJFMXjw4Nhtt91i7ty5cd9998Xy5cujZs2asXz58ujWrVvMnTs3fvKTn8SOO+4YzzzzTAwbNiw++uijGDNmzHq315gxY+Lss8+OunXrxkUXXRQREU2bNt3gNv7ss8+iV69eMWDAgDjhhBPi5ptvjgEDBkRJSUkMGTIkfvrTn8ZJJ50UV111VRx//PExZ86cqFevXkSkv+7PPPNM7LvvvhXetmbNmjjqqKOia9euMXr06CgpKYmzzjor6tSpExdddFGcfPLJcdxxx8XYsWPjRz/6UXTu3DnatGkTEV8Fr1GjRsWgQYPi+9//fixZsiRefPHFePnll+Owww7LraN+/frRtm3bePrpp2Po0KHrneeG3meDBg2K22+/PY4//vj4xS9+Ec8991yMGjUq/v3vf8ekSZPyHuftt9+OE088MX7yk5/Ej3/849h1113Xu87HHnssjjrqqOjYsWMMHz48CgoKYty4cXHIIYfEk08+Gd///vcjIuKFF16IZ555JgYMGBAtWrSI2bNnx8033xzdu3ePN998M2rXrh0RX11056CDDop///vfcfrpp8e+++4bn3zySUyZMiX+7//+Lxo3bpxb9xVXXBEFBQVx/vnnx+LFi2P06NFx8sknx3PPPbfe+a6tX79+0bp16xg1alQ8++yzcf3118dnn30Wd9xxR7nnuO730xtvvBEHHXRQFBcXxwUXXBA1atSIW265Jbp3754L3/vtt1/stNNOcc8998TAgQPzHnPChAnRsGHDOOKII9Y7v4svvjhGjhwZRx99dBx99NHx8ssvx+GHH15uD8TN/SyOGzcuVq5cGYMHD47CwsLYbrvtNml7AcBWLwsAbDVefPHFbERkH3nkkWw2m82WlpZmW7RokT333HNzy0ydOjUbEdkHHngg775HH310dqeddsr9feedd2YLCgqyTz75ZN5yY8eOzUZE9umnn86NRUS2oKAg+8Ybb5Sb0/Lly/P+/uKLL7J77rln9pBDDsmNvfTSS9mIyA4ZMiRv2VNPPTUbEdnhw4fnxs4444xs8+bNs5988knesgMGDMjWr1+/3PrW1apVq+zAgQNzf48bNy4bEdkePXpkS0tLc+NDhw7NVqtWLbto0aLc2MCBA7N16tTJe7zZs2dnq1Wrlr3sssvyxl9//fVs9erV88a7deuWjYjs2LFj85bd3G1ds2bN7Lvvvpsbe/XVV7MRkb3hhhtyYz/60Y+yBQUF2RdeeKHcNih7npdeemm2Tp062XfeeSfv9gsvvDBbrVq17AcffFDuvmvbY489st26dSs3Pn369GxEZKdPn17uud999925sbfeeiv33nn22Wdz42Xv0XHjxuXGUl731atXZzOZTPYXv/hFudsGDhyYjYjs5Zdfnhv77LPPsrVq1cpmMpns+PHjy8137ffjPvvsk+3Zs+d61722ww8/PNu+ffuNLlfR++yVV17JRkR20KBBeePnn39+NiKyjz32WG6sVatW2YjIPvzwwxtdV2lpaXbnnXfOHnHEEXnv/+XLl2fbtGmTPeyww/LG1jVjxoxsRGTvuOOO3NjFF1+cjYjsxIkTK1xfNvv/v0fat2+fXbVqVe726667LhsR2ddff32D8x4+fHg2IrK9e/fOGz/zzDOzEZF99dVXc2Pr+37q06dPtmbNmtn33nsvN/bhhx9m69Wrl+3atWtubNiwYdkaNWpkP/3009zYqlWrsg0aNMiefvrpubGy75JZs2Zls9lsdv78+dmaNWtme/bsmbdtf/3rX2cjIu97aFM/i7NmzcpGRLa4uDg7f/78DW4jANgWOXQaALYiJSUl0bRp0zj44IMj4qtDBvv37x/jx4+PNWvWRETEIYccEo0bN87tqRfx1Z5mjzzySPTv3z83du+990b79u1jt912i08++ST3c8ghh0RExPTp0/PW3a1bt9h9993LzalWrVp561m8eHEcdNBB8fLLL+fGyw5jPPPMM/Pue/bZZ+f9nc1m4/77749jjjkmstls3ryOOOKIWLx4cd7jbo7BgwfnnVvtoIMOijVr1sT777+/wftNnDgxSktLo1+/fnnzadasWey8887ltlNhYWG5Q9c3d1v36NEj7xDgvffeO4qLi3Pn/ystLY3JkyfHMcccE/vtt1+5OZc9z3vvvTcOOuigaNiwYd56e/ToEWvWrIl//OMfG9tsm6Vu3bp5V3zeddddo0GDBtG+ffu8K6SX/V72fFJf908//TSy2Ww0bNhwvcsMGjQo93uDBg1i1113jTp16uSd07FsvmufZ7FBgwbxxhtvxMyZMzf6/Mu285b43//934iIOO+88/LGf/GLX0RExN/+9re88TZt2mxwT7syr7zySsycOTNOOumkWLhwYW67Llu2LA499ND4xz/+kTt0d+3P8urVq2PhwoXRrl27aNCgQd72v//++2OfffaJH/zgB+XWt+75C0877bS8PasPOuigiIhNOpdlRMTPf/7zvL/LvjPKtleZdb+f1qxZE9OmTYs+ffrETjvtlBtv3rx5nHTSSfHUU0/FkiVLIiKif//+sXr16pg4cWJuuWnTpsWiRYvyvjPX9eijj8YXX3wRZ599dt7zrmjv2839LPbt2zeaNGmy3nUDwLbKodMAsJVYs2ZNjB8/Pg4++OCYNWtWbrxTp07x+9//Pv7+97/H4YcfHtWrV4++ffvG3XffHatWrYrCwsKYOHFirF69Ou8fzTNnzox///vf6/3H7Pz58/P+LjuUdF0PPvhgjBw5Ml555ZW8c8mt/Q/v999/PwoKCso9xrpXy16wYEEsWrQobr311rj11ls3aV6bascdd8z7uyxKffbZZxu838yZMyObzcbOO+9c4e3rXnhmhx12KHeRj83d1uvOtWy+ZXNdsGBBLFmyJPbcc8+Nzv21117b5PWmatGiRbnQVL9+/WjZsmW5sYjIez6V8bpns9kKx4uKisptg/r16693vmu/J373u9/FscceG7vsskvsueeeceSRR8Ypp5wSe++9d4Xr39ILhZR9Rtb9TDRr1iwaNGhQLoiv7/O4rrJAuu5hwWtbvHhxNGzYMFasWBGjRo2KcePGxdy5c/O25+LFi3O/v/fee9G3b99NWv+Wfu7KrPu5a9u2bRQUFJQ7b+S622PBggWxfPnyCg8pb9++fZSWlsacOXNijz32iH322Sd22223mDBhQpxxxhkR8dVh040bN879z4CKlL0m686xSZMm5aL35n4WN/X1BYBtjdAIAFuJxx57LD766KMYP358jB8/vtztJSUlcfjhh0dExIABA+KWW26Jhx56KPr06RP33HNP7LbbbrHPPvvkli8tLY299torrrnmmgrXt24cWntvpzJPPvlk9O7dO7p27Ro33XRTNG/ePGrUqBHjxo0rd1GNTVG2Z9UPf/jD9YaRigLPpqhWrVqF4+uLU2vPKZPJxEMPPVThY9StWzfv74q20+Zu6y2da0XrPeyww+KCCy6o8PZddtllsx5vY9Y37409n9TXfbvttotMJrPeeLWl84qI6Nq1a7z33nvx17/+NaZNmxa33XZbXHvttTF27Ni8vSQjvopna5+fcEtsaqis6H1WkbJte9VVV8V3v/vdCpcpew+fffbZMW7cuBgyZEh07tw56tevH5lMJgYMGLDRiwetT2W9l8usb/ts6vZYn/79+8dll10Wn3zySdSrVy+mTJkSJ554YlSvXjn/HNrcz2Lq8wGArZXQCABbiZKSkth+++1zV8td28SJE2PSpEkxduzYqFWrVnTt2jWaN28eEyZMiAMPPDAee+yx3AU9yrRt2zZeffXVOPTQQ7d4L6z7778/ioqKYurUqVFYWJgbHzduXN5yrVq1itLS0pg1a1be3j/rXn22SZMmUa9evVizZk3uKr5VrW3btpHNZqNNmzZbHOYqY1uvrUmTJlFcXBz/+te/NrrepUuXbvG2rIy5borU17169erRtm3bvD19K1PZldxPO+20WLp0aXTt2jUuueSScqFx1qxZeTF/c5R9RmbOnBnt27fPjc+bNy8WLVoUrVq12qLHLTsEv7i4eKPb9r777ouBAwfG73//+9zYypUrY9GiReUec2Pvvcoyc+bMvL373n333SgtLc1djGp9mjRpErVr146333673G1vvfVWFBQU5AX+/v37x4gRI+L++++Ppk2bxpIlS/JOA1CRstdk5syZeYdnL1iwoFz0Tv0sAsC3hXM0AsBWYMWKFTFx4sTo1atXHH/88eV+zjrrrPj8889jypQpERFRUFAQxx9/fDzwwANx5513xpdfflnuXGP9+vWLuXPnxh//+McK17ds2bKNzqtatWqRyWRy54eMiJg9e3a5qyiXnUvupptuyhu/4YYbyj1e37594/77768wZCxYsGCjc6psxx13XFSrVi1GjBhRbi+sbDYbCxcu3OhjVMa2XltBQUH06dMnHnjggXjxxRfL3V42z379+sWMGTNi6tSp5ZZZtGhRfPnllxtcT506dcpFpq9DZbzunTt3rnBbpFr39a1bt260a9cu7zQBEV8dWvzee+/lriC9uY4++uiIiHJXHy7bC7aiK7Rvio4dO0bbtm3j6quvjqVLl5a7fe1tW61atXLv8RtuuCHv8x3x1fkDX3311XJXwo7Y8j0V12fd/7FS9p1x1FFHbfB+1apVi8MPPzz++te/5h1mPW/evLj77rvjwAMPjOLi4tx4+/btY6+99ooJEybEhAkTonnz5tG1a9cNrqNHjx5Ro0aNuOGGG/Ked0VXc0/9LALAt4U9GgFgKzBlypT4/PPPo3fv3hXevv/++0eTJk2ipKQkFxT79+8fN9xwQwwfPjz22muvvL2kIiJOOeWUuOeee+KnP/1pTJ8+PQ444IBYs2ZNvPXWW3HPPffE1KlTK7zQyNp69uwZ11xzTRx55JFx0kknxfz58+PGG2+Mdu3axWuvvZZbrmPHjtG3b98YM2ZMLFy4MPbff/944okn4p133omI/D3nrrjiipg+fXp06tQpfvzjH8fuu+8en376abz88svx6KOPxqeffrpF23BLtW3bNkaOHBnDhg2L2bNnR58+faJevXoxa9asmDRpUgwePDjOP//8DT5GZWzrdV1++eUxbdq06NatWwwePDjat28fH330Udx7773x1FNPRYMGDeKXv/xlTJkyJXr16hWnnnpqdOzYMZYtWxavv/563HfffTF79uwNHurbsWPHuPnmm2PkyJHRrl272H777Td4zroUqa/7scceG3feeWe88847lXpI+O677x7du3ePjh07xnbbbRcvvvhi3HfffXHWWWflLffoo49GNpuNY489dovWs88++8TAgQPj1ltvjUWLFkW3bt3i+eefj9tvvz369OmTuwDU5iooKIjbbrstjjrqqNhjjz3itNNOix122CHmzp0b06dPj+Li4njggQciIqJXr15x5513Rv369WP33XePGTNmxKOPPhqNGjXKe8xf/vKXcd9998UJJ5wQp59+enTs2DE+/fTTmDJlSowdO3aL9+qsyKxZs6J3795x5JFHxowZM+Kuu+6Kk046aZPWMXLkyHjkkUfiwAMPjDPPPDOqV68et9xyS6xatSpGjx5dbvn+/fvHxRdfHEVFRXHGGWdEQcGG97lo0qRJnH/++TFq1Kjo1atXHH300fHPf/4zHnrooXKfq9TPIgB8WwiNALAVKCkpiaKiojjssMMqvL2goCB69uwZJSUlsXDhwmjUqFF06dIlWrZsGXPmzKnwyqkFBQUxefLkuPbaa+OOO+6ISZMmRe3atWOnnXaKc889d5NizSGHHBJ/+tOf4oorroghQ4ZEmzZt4sorr4zZs2fnhcaIiDvuuCOaNWsWf/nLX2LSpEnRo0ePmDBhQuy6665RVFSUW65p06bx/PPPx+9+97uYOHFi3HTTTdGoUaPYY4894sorr9zMLVc5Lrzwwthll13i2muvjREjRkTEV+dVPPzww9cbf9dWGdt6XTvssEM899xz8dvf/jZKSkpiyZIlscMOO8RRRx0VtWvXjoiI2rVrxxNPPBGXX3553HvvvXHHHXdEcXFx7LLLLjFixIjcRVnW5+KLL473338/Ro8eHZ9//nl069btawuNqa/7McccE40bN4577rknfvOb31TavM4555yYMmVKTJs2LVatWhWtWrWKkSNHxi9/+cu85e6999448MAD864Wvrluu+222GmnneLPf/5zTJo0KZo1axbDhg2L4cOHJz2H7t27x4wZM+LSSy+NP/zhD7F06dJo1qxZdOrUKX7yk5/klrvuuuuiWrVqUVJSEitXrowDDjggHn300XJXt65bt248+eSTMXz48Jg0aVLcfvvtsf3228ehhx4aLVq0SJrruiZMmBAXX3xxXHjhhVG9evU466yz4qqrrtqk++6xxx7x5JNPxrBhw2LUqFFRWloanTp1irvuuivvKuhl+vfvH7/5zW9i+fLlG7za9NpGjhwZRUVFMXbs2FwonzZtWrk9UFM/iwDwbZHJVvbxDwAA/59XXnklOnToEHfddVecfPLJVT0dtnGXXnppjBs3LmbOnLnei5B8HT7++ONo06ZNjB8/fov3aCTfJZdcEiNGjIgFCxbY0w8AvkWcoxEAqBQrVqwoNzZmzJgoKCjY6LnQYFMMHTo0li5dWuFV2b9OY8aMib322ktkBADYCIdOAwCVYvTo0fHSSy/FwQcfHNWrV4+HHnooHnrooRg8eHDe1V9hS9WtWzfmz5//ja/3iiuu+MbXCQCwLRIaAYBK0aVLl3jkkUfi0ksvjaVLl8aOO+4Yl1xySVx00UVVPTUAAOAb4ByNAAAAAEAy52gEAAAAAJIJjQAAAABAsm/9ORpLS0vjww8/jHr16kUmk6nq6QAAAADANiWbzcbnn38e3/nOd6KgYP37LX7rQ+OHH37oSpcAAAAAkGjOnDnRokWL9d7+rQ+N9erVi4ivNkRxcXEVzwYAAAAAti1LliyJli1b5jrb+nzrQ2PZ4dLFxcVCIwAAAABsoY2dltDFYAAAAACAZEIjAAAAAJBMaAQAAAAAkgmNAAAAAEAyoREAAAAASCY0AgAAAADJhEYAAAAAIJnQCAAAAAAkExoBAAAAgGRCIwAAAACQTGgEAAAAAJIJjQAAAABAMqERAAAAAEgmNAIAAAAAyYRGAAAAACCZ0AgAAAAAJBMaAQAAAIBkQiMAAAAAkExoBAAAAACSCY0AAAAAQDKhEQAAAABIJjQCAAAAAMmERgAAAAAgmdAIAAAAACQTGgEAAACAZEIjAAAAAJBMaAQAAAAAkgmNAAAAAEAyoREAAAAASCY0AgAAAADJhEYAAAAAIJnQCAAAAAAkExoBAAAAgGRCIwAAAACQTGgEAAAAAJIJjQAAAABAMqERAAAAAEgmNAIAAAAAyYRGAAAAACCZ0AgAAADwLbBs2bLIZDKRyWRi2bJlVT0d/gsJjQAAAABAMqERAAAAAEgmNAIAAAAAyYRGAAAAACCZ0AgAAAAAJBMaAQAAAIBkQiMAAAAAkExoBAAAAACSCY0AAAAAQDKhEQAAAABIJjQCAAAAAMmERgAAAAAgmdAIAAAAACQTGgEAAACAZEIjAAAAAJBMaAQAAAAAkgmNAAAAAEAyoREAAAAASCY0AgAAAADJhEYAAAAAIJnQCAAAAAAkExoBAAAAgGRCIwAAAACQTGgEAAAAAJIJjQAAAABAMqERAAAAAEgmNAIAAAAAyYRGAAAAACCZ0AgAAAAAJBMaAQAAAIBkQiMAAAAAkExoBAAAAACSCY0AAAAAQDKhEQAAAABIJjQCAAAAAMmERgAAAAAgmdAIAAAAACQTGgEAAACAZEIjAAAAAJBMaAQAAAAAkgmNAAAAAEAyoREAAAAASCY0AgAAAADJhEYAAAAAIJnQCAAAAAAkExoBAAAAgGRCIwAAAACQTGgEAAAAAJIJjQAAAABAMqERAAAAAEgmNAIAAAAAyYRGAAAAACCZ0AgAAAAAJBMaAQAAAIBkQiMAAAAAkExoBAAAAACSCY0AAAAAQDKhEQAAAABIJjQCAAAAAMmERgAAAAAgmdAIAAAAACQTGgEAAACAZEIjAAAAAJBMaAQAAAAAkgmNAAAAAEAyoREAAAAASCY0AgAAAADJhEYAAAAAIJnQCAAAAAAkExoBAAAAgGRCIwAAAACQTGgEAAAAAJIJjQAAAABAMqERAAAAAEgmNAIAAAAAyYRGAAAAACCZ0AgAAAAAJBMaAQAAAIBkQiMAAAAAkExoBAAAAACSCY0AAAAAQDKhEQAAAABIJjQCAAAAAMmERgAAAAAgmdAIAAAAACQTGgEAAACAZEIjAAAAAJBMaAQAAAAAkgmNAAAAAEAyoREAAAAASCY0AgAAAADJhJ1vjvIAACAASURBVEYAAAAAIJnQCAAAAAAkExoBAAAAgGRCIwAAAACQrMpD49y5c+OHP/xhNGrUKGrVqhV77bVXvPjii7nbs9lsXHzxxdG8efOoVatW9OjRI2bOnFmFMwYAAAAA1lWlofGzzz6LAw44IGrUqBEPPfRQvPnmm/H73/8+GjZsmFtm9OjRcf3118fYsWPjueeeizp16sQRRxwRK1eurMKZAwAAAABrq16VK7/yyiujZcuWMW7cuNxYmzZtcr9ns9kYM2ZM/OY3v4ljjz02IiLuuOOOaNq0aUyePDkGDBjwjc8ZAAAAACivSvdonDJlSuy3335xwgknxPbbbx8dOnSIP/7xj7nbZ82aFR9//HH06NEjN1a/fv3o1KlTzJgxo8LHXLVqVSxZsiTvBwAAAAD4elVpaPzPf/4TN998c+y8884xderU+NnPfhbnnHNO3H777RER8fHHH0dERNOmTfPu17Rp09xt6xo1alTUr18/99OyZcuv90kAAAAAAFUbGktLS2PfffeNyy+/PDp06BCDBw+OH//4xzF27Ngtfsxhw4bF4sWLcz9z5sypxBkDAAAAABWp0tDYvHnz2H333fPG2rdvHx988EFERDRr1iwiIubNm5e3zLx583K3rauwsDCKi4vzfgAAAACAr1eVhsYDDjgg3n777byxd955J1q1ahURX10YplmzZvH3v/89d/uSJUviueeei86dO3+jcwUAAAAA1q9Krzo9dOjQ6NKlS1x++eXRr1+/eP755+PWW2+NW2+9NSIiMplMDBkyJEaOHBk777xztGnTJn7729/Gd77znejTp09VTh0AAAAAWEuVhsbvfe97MWnSpBg2bFj87ne/izZt2sSYMWPi5JNPzi1zwQUXxLJly2Lw4MGxaNGiOPDAA+Phhx+OoqKiKpw5AAAAALC2TDabzVb1JL5OS5Ysifr168fixYudrxEAAAD41lq2bFnUrVs3IiKWLl0aderUqeIZ8W2xqX2tSs/RCAAAAAB8OwiNAAAAAEAyoREAAAAASCY0AgAAAADJhEYAAAAAIJnQCAAAAAAkExoBAAAAgGRCIwAAAACQTGgEAAAAAJIJjQAAAABAMqERAAAAAEgmNAIAAAAAyYRGAAAAACCZ0AgAAAAAJBMaAQAAAIBkQiMAAAAAkExoBAAAAACSCY0AAAAAQDKhEQAAAABIJjQCAAAAAMmERgAAAAAgmdAIAAAAACQTGgEAAACAZEIjAAAAAJBMaAQAAAAAkgmNAAAAAEAyoREAAAAASCY0AgAAAADJhEYAAAAAIJnQCAAAAAAkExoBAAAAgGRCIwAAAACQTGgEAAAAAJIJjQAAAABAMqERAAAAAEgmNAIAAAAAyYRGAAAAACCZ0AgAAAAAJBMaAQAAAIBkQiMAAAAAkExoBAAAAACSCY0AAAAAQDKhEQAAAABIJjQCAAAAAMmERgAAAAAgmdAIAAAAACQTGgEAAACAZEIjAAAAAJBMaAQAAAAAkgmNAAAAAEAyoREAAAAASCY0AgAAAADJhEYAAAAAIJnQCAAAAAAkExoBAAAAgGRCIwAAAACQTGgEAAAAAJIJjQAAAABAMqERAAAAAEgmNAIAAAAAyYRGAAAAACCZ0AgAAAAAJBMaAQAAAIBkQiMAAAAAkExoBAAAAACSVa/qCQAAAADfTq0v/FtVT+G/SukXK3O/t//tw1FQs6gKZ/PfZ/YVPat6ClXOHo0AAAAAQDKhEQAAAABIJjQCAAAAAMmERgAAAAAgmdAIAAAAACQTGgEAAACAZEIjAAAAAJBMaAQAAAAAkgmNAAAAAEAyoREAAAAASCY0AgAAAADJhEYAAAAAIJnQCAAAAAAkExoBAAAAgGRCIwAAAACQTGgEAAAAAJIJjQAAAABAMqERAAAAAEgmNAIAAAAAyYRGAAAAACCZ0AgAAAAAJBMaAQAAAIBkQiMAAAAAkExoBAAAAACSCY0AAAAAQDKhEQAAAABIJjQCAAAAAMmERgAAAAAgmdAIAAAAACQTGgEAAACAZEIjAAAAAJBMaAQAAAAAkgmNAAAAAEAyoREAAAAASCY0AgAAAADJhEYAAAAAIJnQCAAAAAAkExoBAAAAgGRCIwAAAACQTGgEAAAAAJIJjQAAAABAMqERAAAAAEgmNAIAAAAAyYRGAAAAACCZ0AgAAAAAJBMaAQAAAIBkQiMAAAAAkExoBAAAAACSCY0AAAAAQDKhEQAAAABIJjQCAAAAAMmERgAAAAAgmdAIAAAAACQTGgEAAACAZEIjAAAAAJBMaAQAAAAAkgmNAAAAAEAyoREAAAAASCY0AgAAAADJhEYAAAAAIJnQCAAAAAAkExoBAAAAgGRCIwAAAACQTGgEAAAAAJIJjQAAAABAMqERAAAAAEgmNAIAAAAAyYRGAAAAACCZ0AgAAAAAJBMaAQAAAIBkQiMAAAAAkExoBAAAAACSCY0AAAAAQDKhEQAAAABIJjQCAAAAAMmERgAAAAAgmdAIAAAAACQTGgEAAACAZEIjAAAAAJBMaAQAAAAAkgmNAAAAAEAyoREAAAAASCY0AgAAAADJhEYAAAAAIJnQCAAAAAAkExoBAAAAgGRCIwAAAACQTGgEAAAAAJIJjQAAAABAMqERAAAAAEgmNAIAAAAAyYRGAAAAACCZ0AgAAAAAJBMaAQAAAIBkQiMAAAAAkExoBAAAAACSCY0AAAAAQDKhEQAAAABIJjQCAAAAAMmERgAAAAAgmdAIAAAAACQTGgEAAACAZEIjAAAAAJBMaAQAAAAAkgmNAAAAAEAyoREAAAAASCY0AgAAAADJhEYAAAAAIJnQCAAAAAAkExoBAAAAgGRCIwAAAACQTGgEAAAAAJIJjQAAAABAMqERAAAAAEgmNAIAAAAAyYRGAAAAACCZ0AgAAAAAJBMaAQAAAIBkW01ovOKKKyKTycSQIUNyYytXroyf//zn0ahRo6hbt2707ds35s2bV4WzBAAAAAAqslWExhdeeCFuueWW2HvvvfPGhw4dGg888EDce++98cQTT8SHH34Yxx13XBXNEgAAAABYnyoPjUuXLo2TTz45/vjHP0bDhg1z44sXL44//elPcc0118QhhxwSHTt2jHHjxsUzzzwTzz77bBXOGAAAAABYV5WHxp///OfRs2fP6NGjR974Sy+9FKtXr84b32233WLHHXeMGTNmfNPTBAAAAAA2oHpVrnz8+PHx8ssvxwsvvFDuto8//jhq1qwZDRo0yBtv2rRpfPzxx+t9zFWrVsWqVatyfy9ZsqTyJgwAAAAAVKjK9micM2dOnHvuuVFSUhJFRUWV9rijRo2K+vXr535atmxZaY8NAAAAAFSsykLjSy+9FPPnz4999903qlevHtWrV48nnngirr/++qhevXo0bdo0vvjii1i0aFHe/ebNmxfNmjVb7+MOGzYsFi9enPuZM2fO1/1UAAAAAOC/XpUdOn3ooYfG66+/njd22mmnxW677Ra/+tWvomXLllGjRo34+9//Hn379o2IiLfffjs++OCD6Ny583oft7CwMAoLC7/WuQMAAAAA+aosNNarVy/23HPPvLE6depEo0aNcuNnnHFGnHfeebHddttFcXFxnH322dG5c+fYf//9q2LKAAAAAMB6VOnFYDbm2muvjYKCgujbt2+sWrUqjjjiiLjpppuqeloAAAAAwDq2qtD4+OOP5/1dVFQUN954Y9x4441VMyEAAAAAYJNU2cVgAAAAAIBvD6ERAAAAAEgmNAIAAAAAyYRGAAAAACCZ0AgAAAAAJBMaAQAAAIBkQiMAAAAAkExoBAAAAACSCY0AAAAAQDKhEQAAAABIJjQCAAAAAMmERgAAAAAgmdAIAAAAACQTGgEAAACAZEIjAAAAAJBMaAQAAAAAkgmNAAAAAEAyoREAAAAASCY0AgAAAADJhEYAAAAAIJnQCAAAAAAkExoBAAAAgGRCIwAAAACQTGgEAAAAAJIJjQAAAABAMqERAAAAAEgmNAIAAAAAyYRGAAAAACCZ0AgAAAAAJBMaAQAAAIBkQiMAAAAAkExoBAAAAACSCY0AAAAAQDKhEQAAAABIJjQCAAAAAMmERgAAAAAgmdAIAAAAACSrvjkLL1q0KCZNmhRPPvlkvP/++7F8+fJo0qRJdOjQIY444ojo0qXL1zVPAAAAAGArtkl7NH744YcxaNCgaN68eYwcOTJWrFgR3/3ud+PQQw+NFi1axPTp0+Owww6L3XffPSZMmPB1zxkAAAAA2Mps0h6NHTp0iIEDB8ZLL70Uu+++e4XLrFixIiZPnhxjxoyJOXPmxPnnn1+pEwUAAAAAtl6bFBrffPPNaNSo0QaXqVWrVpx44olx4oknxsKFCytlcgAAAADAtmGTDp3eWGRMXR4AAAAA2LZt9lWnb7/99vjb3/6W+/uCCy6IBg0aRJcuXeL999+v1MkBAAAAsGkKahZFq189GK1+9WAU1Cyq6unwX2izQ+Pll18etWrVioiIGTNmxI033hijR4+Oxo0bx9ChQyt9ggAAAADA1m+TztG4tjlz5kS7du0iImLy5MnRt2/fGDx4cBxwwAHRvXv3yp4fAAAAALAN2Ow9GuvWrZu72Mu0adPisMMOi4iIoqKiWLFiReXODgAAAADYJmz2Ho2HHXZYDBo0KDp06BDvvPNOHH300RER8cYbb0Tr1q0re34AAAAAwDZgs/dovPHGG6Nz586xYMGCuP/++3NXmH7ppZfixBNPrPQJAgAAAABbv83eo7FBgwbxhz/8odz4iBEjKmVCAAAAAMC2Z7NDY0TEypUr47XXXov58+dHaWlpbjyTycQxxxxTaZMDAAAAALYNmx0aH3744TjllFNyF4RZWyaTiTVr1lTKxAAAAACAbcdmn6Px7LPPjn79+sVHH30UpaWleT8iIwAAAAD8d9rs0Dhv3rw477zzomnTpl/HfAAAAACAbdBmh8bjjz8+Hn/88a9hKgAAAADAtmqzz9H4hz/8IU444YR48sknY6+99ooaNWrk3X7OOedU2uQAAAAAgG3DZofGv/zlLzFt2rQoKiqKxx9/PDKZTO62TCYjNAIAAADAf6HNDo0XXXRRjBgxIi688MIoKNjsI68BAAAAgG+hzS6FX3zxRfTv319kBAAAAAByNrsWDhw4MCZMmPB1zAUAAAAA2EZt9qHTa9asidGjR8fUqVNj7733LncxmGuuuabSJgcAAAAAbBs2OzS+/vrr0aFDh4iI+Ne//pV329oXhgEAAAAA/ntsdmicPn361zEPAOD/sXfv0VHWZwLHnyGQBJIQ8AKI4CL1gvFSrK439uANxUtRhK5iV1fUxdYFpVra4tmKVK2CPVT3dLUq3raWCut1rVZdpRWN9wN4W1cqWlTkJqwSAho0yf6xS5YY0Ay/GZOBz+ecOSd5Z+Z9n4R5J+Gbd+YFAAAoYM7oAgAAAAAka1Vo/P73vx+LFy9u1QpnzZoVM2bMSBoKAAAAACgsrXrp9I477hh77713DBo0KIYNGxYHHnhg9O7dO0pLS+Ojjz6KN954I6qrq2PmzJnRu3fvuPnmm/M9NwAAAADQjrQqNF5xxRUxbty4uOWWW+KGG26IN954o9n1FRUVMWTIkLj55pvjuOOOy8ugAAAAAED7lWlsbGzM9k4fffRRvPfee/HJJ5/EDjvsEN/4xjfa7Rmna2pqorKyMlavXh1du3Zt63EAAABgm9Fv4sNtPQJ8bRZNObGtR8ib1va1rM86HRHRvXv36N69+xYPBwAAAABsXZx1GgAAAABIJjQCAAAAAMmERgAAAAAgmdAIwFZp7dq1kclkIpPJxNq1a9t6HAAAgK3eFoXGzz//PJ544om46aabYs2aNRERsWTJkqitrc3pcAAAAABAYcj6rNPvvvtuHHfccfHee+9FXV1dHHPMMVFRURFTp06Nurq6uPHGG/MxJwAAAADQjmV9ROP48ePjwAMPjI8++ig6d+7ctPyUU06J2bNn53Q4AAAAAKAwZH1E49NPPx3PPvtsFBcXN1ver1+/+OCDD3I2GAAAAABQOLI+orGhoSHq6+tbLF+8eHFUVFTkZCgAAAAAoLBkHRqPPfbYuO6665o+z2QyUVtbG5dddlmccMIJOR0OAICtmzPEAwBsPbIOjdOmTYtnnnkmqqqq4tNPP43vfve7TS+bnjp1aj5mBAAAoA35owAArZH1ezT26dMnXnnllZg5c2a8+uqrUVtbG+eee2783d/9XbOTwwAAAAAA246sQ2NERMeOHeOMM87I9SwAAAAAQIHaotC4ZMmSqK6ujhUrVkRDQ0Oz6y688MKcDAYAAAAAFI6sQ+Mdd9wR3/ve96K4uDi23377yGQyTddlMhmhEQAAAAC2QVmHxksvvTQmTZoUl1xySXTokPW5ZAAAAACArVDWpXDdunUxatQokREAAAAAaJJ1LTz33HPj7rvvzscsAAAAAECByvql01dffXV8+9vfjkcffTT23Xff6NSpU7Prf/nLX+ZsOAAAAACgMGxRaHzsscdizz33jIhocTIYAAAAAGDbk3VonDZtWtx2220xevToPIwDAAAAABSirN+jsaSkJAYNGpSPWQAAAACAApV1aBw/fnz86le/yscsAAAAAECByvql0y+++GL88Y9/jIceeij23nvvFieDue+++3I2HAAAAABQGLIOjd26dYsRI0bkYxYAAAAAoEBlHRpvv/32fMwBAAAAABSwrN+jEQAAAADgi1p1ROO3vvWtmD17dnTv3j3233//yGQym73tvHnzcjYcAAAAAFAYWhUaTz755CgpKWn6+MtCIwAAAACw7WlVaLzsssuaPp48eXK+ZgEAAAAAClTW79HYv3//WLVqVYvlH3/8cfTv3z8nQwEAAAAAhSXr0Lho0aKor69vsbyuri4WL16ck6EAAAAAgMLSqpdOR0Q8+OCDTR8/9thjUVlZ2fR5fX19zJ49O3bdddfcTgcAAAAAFIRWh8bhw4dHREQmk4mzzjqr2XWdOnWKfv36xbRp03I7HQAAAABQEFodGhsaGiIiYtddd42XXnopdthhh7wNBQAAAAAUllaHxg3+8pe/5GMOAAAAAKCAZX0yGAAAAACALxIaAQAAAIBkQiMAAAAAkExoBAAAAACSbVFofPvtt+OnP/1pnH766bFixYqIiHjkkUfiP//zP3M6HAAAAABQGLIOjXPmzIl99903XnjhhbjvvvuitrY2IiJeeeWVuOyyy3I+IAAAAADQ/mUdGidOnBhXXnllPP7441FcXNy0/Kijjornn38+p8MBAAAAAIUh69D42muvxSmnnNJieY8ePWLlypU5GQoAAAAAKCxZh8Zu3brF0qVLWyyfP39+7LzzzjkZCgAAAAAoLFmHxlGjRsVPfvKTWLZsWWQymWhoaIhnnnkmJkyYEH//93+fjxkBAAAAgHYu69B41VVXxYABA6Jv375RW1sbVVVVMXjw4DjssMPipz/9aT5mBAAAAADauY7Z3qG4uDimT58ekyZNitdeey1qa2tj//33j9133z0f8wEAAAAABSDr0LhB3759o2/fvrmcBQAAAAAoUFm/dHrkyJExderUFsuvueaa+Nu//ducDAUAAAAAFJasQ+NTTz0VJ5xwQovlxx9/fDz11FM5GQoAAAAAKCxZh8ba2tooLi5usbxTp05RU1OTk6EAAAAAgMKSdWjcd999Y9asWS2Wz5w5M6qqqnIyFAAAAABQWLI+Gcyll14aI0aMiLfffjuOOuqoiIiYPXt23HXXXXH33XfnfEAAAAAAoP3LOjQOGzYsHnjggbjqqqvinnvuic6dO8d+++0XTzzxRBx++OH5mBEAAAAAaOeyDo0RESeeeGKceOKJuZ4FAAAAAChQWxQaIyLWr18fK1asiIaGhmbLd9lll+ShAAAAAIDCknVofOutt+Kcc86JZ599ttnyxsbGyGQyUV9fn7PhAAAAAIDCkHVoHD16dHTs2DEeeuih2GmnnSKTyeRjLgAAAACggGQdGl9++eWYO3duDBgwIB/zAAAAAAAFqEO2d6iqqoqVK1fmYxYAAAAAoEBlHRqnTp0aP/7xj+PJJ5+MVatWRU1NTbMLAAAAALDtyfql00OGDImIiKOPPrrZcieDAQAAAIBtV9ah8U9/+lM+5gAAAAAACljWofHwww/PxxwAAAAAQAHL+j0aIyKefvrpOOOMM+Kwww6LDz74ICIi7rzzzqiurs7pcAAAAABAYcg6NN57770xdOjQ6Ny5c8ybNy/q6uoiImL16tVx1VVX5XxAAAAAAKD9yzo0XnnllXHjjTfG9OnTo1OnTk3LBw0aFPPmzcvpcAAAAABAYcg6NC5YsCAGDx7cYnllZWV8/PHHORkKAAAAACgsWYfGXr16xcKFC1ssr66ujv79++dkKAAAAACgsGQdGseMGRPjx4+PF154ITKZTCxZsiRmzJgREyZMiPPPPz8fMwIAAAAA7VzHbO8wceLEaGhoiKOPPjrWrVsXgwcPjpKSkpgwYUJccMEF+ZgRAAAAAGjnsgqN9fX18cwzz8TYsWPjRz/6USxcuDBqa2ujqqoqysvL8zUjAAAAANDOZRUai4qK4thjj43/+q//im7dukVVVVW+5gIAAAAACkjW79G4zz77xDvvvJOPWQAAAACAApV1aLzyyitjwoQJ8dBDD8XSpUujpqam2QUAAAAA2PZkfTKYE044ISIiTjrppMhkMk3LGxsbI5PJRH19fe6mAwAAAAAKQtah8U9/+lM+5gAAAAAACljWofHwww/PxxwAAAAAQAHL+j0aIyKefvrpOOOMM+Kwww6LDz74ICIi7rzzzqiurs7pcAAAAABAYcg6NN57770xdOjQ6Ny5c8ybNy/q6uoiImL16tVx1VVX5XxAAAAAAKD926KzTt94440xffr06NSpU9PyQYMGxbx583I6HAAAAABQGLIOjQsWLIjBgwe3WF5ZWRkff/xxToYCAAAAAApL1qGxV69esXDhwhbLq6uro3///jkZCgAAAAAoLFmHxjFjxsT48ePjhRdeiEwmE0uWLIkZM2bEhAkT4vzzz8/HjAAAAABAO9cx2ztMnDgxGhoa4uijj45169bF4MGDo6SkJCZMmBAXXHBBPmYEAAAAANq5VoXGV199NfbZZ5/o0KFDZDKZ+Kd/+qf40Y9+FAsXLoza2tqoqqqK8vLyfM8KAAAAALRTrXrp9P777x8rV66MiIj+/fvHqlWrori4OKqqquKggw4SGQEAAABgG9eq0NitW7f4y1/+EhERixYtioaGhrwOBQAAAAAUlla9dHrkyJFx+OGHx0477RSZTCYOPPDAKCoq2uRt33nnnZwOCAAAAAC0f60KjTfffHOMGDEiFi5cGBdeeGGMGTMmKioq8j0bAAAAAFAgWn3W6eOOOy4iIubOnRvjx48XGgEAAACAJq0OjRvcfvvt+ZgDAAAAAChgWYfGtWvXxpQpU2L27NmxYsWKFieG8R6NAAAAALDtyTo0/sM//EPMmTMnzjzzzKaTwwAAAAAA27asQ+MjjzwSDz/8cAwaNCgf8wAAAAAABahDtnfo3r17bLfddvmYBQAAAAAoUFmHxiuuuCImTZoU69aty8c8AAAAAEAByvql09OmTYu33347evbsGf369YtOnTo1u37evHk5Gw4AAAAAKAxZh8bhw4fnYw4AAAAAoIBlHRovu+yyfMwBAAAAABSwrN+jEQAAAADgi1p9RGP37t0jk8l85e3++7//O2kgAAAAAKDwtDo0XnfddfmcAwAAAAAoYK0OjWeddVY+5wAAAAAACpj3aAQAAAAAkgmNAAAAAEAyoREAAAAASCY0AgAAAADJhEYAAAAAIFmrzzq9wcUXX7zJ5ZlMJkpLS2O33XaLk08+Obbbbrvk4QAAAACAwpB1aJw/f37Mmzcv6uvrY88994yIiD//+c9RVFQUAwYMiBtuuCF++MMfRnV1dVRVVeV8YAAAAACg/cn6pdMnn3xyDBkyJJYsWRJz586NuXPnxuLFi+OYY46J008/PT744IMYPHhwXHTRRfmYFwAAAABoh7IOjb/4xS/iiiuuiK5duzYtq6ysjMmTJ8c111wTXbp0iUmTJsXcuXNzOigAAAAA0H5lHRpXr14dK1asaLH8ww8/jJqamoiI6NatW6xfvz59OgAAAACgIGzRS6fPOeecuP/++2Px4sWxePHiuP/+++Pcc8+N4cOHR0TEiy++GHvssUfOhwUAAAAA2qesTwZz0003xUUXXRSjRo2Kzz///H9X0rFjnHXWWXHttddGRMSAAQPilltuye2kAAAAAEC7lfURjeXl5TF9+vRYtWpVzJ8/P+bPnx+rVq2Km2++OcrKyiIiYuDAgTFw4MCvXNfVV18df/3Xfx0VFRXRo0ePGD58eCxYsKDZbT799NMYO3ZsbL/99lFeXh4jR46M5cuXZzs2AAAAAJBHWYfG3/72t7Fu3booLy+P/fbbL/bbb78oLy/foo3PmTMnxo4dG88//3w8/vjj8dlnn8Wxxx4ba9eubbrNRRddFL///e/j7rvvjjlz5sSSJUtixIgRW7Q9AAAAACA/Mo2NjY3Z3GHHHXeMTz75JE466aQ444wzYujQoVFUVJSTYT788MPo0aNHzJkzJwYPHhyrV6+OHXfcMX73u9/Fd77znYiIePPNN2OvvfaK5557Lg455JCvXGdNTU1UVlbG6tWrm50pG4Ct29q1a5v+EFZbW9t01D3QvthXoTDYV9lS/SY+3NYjwNdm0ZQT23qEvGltX8v6iMalS5fGzJkzI5PJxKmnnho77bRTjB07Np599tmkgSP+94zWERHbbbddRETMnTs3PvvssxgyZEjTbQYMGBC77LJLPPfcc5tcR11dXdTU1DS7AAAAAAD5lXVo7NixY3z729+OGTNmxIoVK+Laa6+NRYsWxZFHHhnf+MY3tniQhoaG+MEPTY/c5gAAIABJREFUfhCDBg2KffbZJyIili1bFsXFxdGtW7dmt+3Zs2csW7Zsk+u5+uqro7KysunSt2/fLZ4JAAAAAGidrEPjxrp06RJDhw6N448/PnbfffdYtGjRFq9r7Nix8frrr8fMmTNTRopLLrkkVq9e3XR5//33k9YHAAAAAHy1jltyp3Xr1sX9998fM2bMiNmzZ0ffvn3j9NNPj3vuuWeLhhg3blw89NBD8dRTT0WfPn2alvfq1SvWr18fH3/8cbOjGpcvXx69evXa5LpKSkqipKRki+YAAAAAALZM1kc0jho1Knr06BEXXXRR9O/fP5588slYuHBhXHHFFTFgwICs1tXY2Bjjxo2L+++/P/74xz/Grrvu2uz6Aw44IDp16hSzZ89uWrZgwYJ477334tBDD812dAAAAAAgT7I+orGoqCj+7d/+bZNnm3799deb3l+xNcaOHRu/+93v4t///d+joqKi6X0XKysro3PnzlFZWRnnnntuXHzxxbHddttF165d44ILLohDDz20VWecBgAAAAC+HlmHxhkzZjT7fM2aNXHXXXfFLbfcEnPnzo36+vpWr+vXv/51REQcccQRzZbffvvtMXr06IiIuPbaa6NDhw4xcuTIqKuri6FDh8YNN9yQ7diQM2vXro3y8vKIiKitrY2ysrI2nggAAACg7W3RezRGRDz11FNx6623xr333hu9e/eOESNGxPXXX5/VOhobG7/yNqWlpXH99ddnvW4AAAAA4OuTVWhctmxZ3HHHHXHrrbdGTU1NnHrqqVFXVxcPPPBAVFVV5WtGAAAAAKCda/XJYIYNGxZ77rlnvPrqq3HdddfFkiVL4le/+lU+ZwMAAAAACkSrj2h85JFH4sILL4zzzz8/dt9993zOBAAAAAAUmFYf0VhdXR1r1qyJAw44IA4++OD4l3/5l1i5cmU+ZwMAAAAACkSrQ+MhhxwS06dPj6VLl8b3vve9mDlzZvTu3TsaGhri8ccfjzVr1uRzTgAAAACgHWt1aNygrKwszjnnnKiuro7XXnstfvjDH8aUKVOiR48ecdJJJ+VjRgAAAACgncs6NG5szz33jGuuuSYWL14cd911V65mAgAAAAAKTFJo3KCoqCiGDx8eDz74YC5WBwAAAAAUmJyERgAAAABg2yY0AgAAAADJhEYAAAAAIJnQCAAAAAAkExoBAAAAgGRCIwAAAACQTGgEAAAAAJIJjQAAAABAMqERAAAAAEgmNAIAAAAAyYRGAAAAACCZ0AgAAAAAJBMaAQAAAIBkQiMAAAAAkExoBAAAAACSCY0AAAAAQDKhEQAAAABIJjQCAAAAAMmERgAAAAAgmdAIAAAAACQTGgEAAACAZEIjAAAAAJBMaAQAAAAAkgmNAAAAAEAyoREAAAAASCY0AgAAAADJhEYAAAAAIJnQCAAAAAAkExoBAAAAgGRCIwAAAACQTGgEAAAAAJIJjQAAAABAMqERAAAAAEgmNAIAAAAAyYRGAAAAACCZ0AgAAAAAJBMaAQAAAIBkQiMAAAAAkExoBAAAAACSdWzrAQC2Ff0mPtzWI2xTGtZ/2vTxXpc+Gh2KS9twmm3PoikntvUIAADA18wRjQAAAABAMqERAAAAAEgmNAIAAAAAyYRGAAAAACCZ0AgAAAAAJHPWaQCAjThD/NfLGeLbljPEAwC5JDQCAAAFxx8Fvl7+KNC2/FEAKBReOg0AAAAAJBMaAQAAAIBkQiMAAAAAkExoBAAAAACSCY0AAAAAQDKhEQAAAABIJjQCAAAAAMmERgAAAAAgmdAIAAAAACQTGgEAAACAZEIjAAAAAJBMaAQAAAAAkgmNAAAAAEAyoREAAAAASCY0AgAAAADJhEYAAAAAIJnQCAAAAAAkExoBAAAAgGRCIwAAAACQTGgEAAAAAJIJjQAAAABAMqERAAAAAEgmNAIAAAAAyYRGAAAAACCZ0AgAAAAAJBMaAQAAAIBkQiMAAAAAkExoBAAAAACSCY0AAAAAQDKhEQAAAABIJjQCAAAAAMmERgAAAAAgmdAIAAAAACQTGgEAAACAZEIjAAAAAJBMaAQAAAAAkgmNAAAAAEAyoREAAAAASCY0AgAAAADJhEYAAAAAIJnQCAAAAAAkExoBAAAAgGRCIwAAAACQTGgEAAAAAJIJjQAAAABAMqERAAAAAEgmNAIAAAAAyYRGAAAAACCZ0AgAAAAAJBMaAQAAAIBkQiMAAAAAkExoBAAAAACSCY0AAAAAQDKhEQAAAABIJjQCAAAAAMmERgAAAAAgmdAIAAAAACQTGgEAAACAZEIjAAAAAJBMaAQAAAAAkgmNAAAAAEAyoREAAAAASCY0AgAAAADJhEYAAAAAIJnQCAAAAAAkExoBAAAAgGRCIwAAAACQTGgEAAAAAJIJjQAAAABAMqERAAAAAEgmNAIAAAAAyYRGAAAAACCZ0AgAAAAAJBMaAQAAAIBkQiMAAAAAkExoBAAAAACSCY0AAAAAQDKhEQAAAABIJjQCAAAAAMmERgAAAAAgmdAIAAAAACQTGgEAAACAZEIjAAAAAJBMaAQAAAAAkgmNAAAAAEAyoREAAAAASCY0AgAAAADJhEYAAAAAIJnQCAAAAAAkExoBAAAAgGRCIwAAAACQTGgEAAAAAJIJjQAAAABAMqERAAAAAEgmNAIAAAAAyYRGAAAAACCZ0AgAAAAAJBMaAQAAAIBkQiMAAAAAkExoBAAAAACSCY0AAAAAQDKhEQAAAABIJjQCAAAAAMmERgAAAAAgmdAIAAAAACQTGgEAAACAZEIjAAAAAJBMaAQAAAAAkgmNAAAAAEAyoREAAAAASCY0AgAAAADJhEYAAAAAIJnQCAAAAAAkExoBAAAAgGRCIwAAAACQrGNbD0C6fhMfbusRtikN6z9t+nivSx+NDsWlbTjNtmfRlBPbegQAAABgExzRCAAAAAAkExoBAAAAgGRCIwAAAACQTGgEAAAAAJIJjQAAAABAMqERAAAAAEgmNAIAAAAAyYRGAAAAACCZ0AgAAAAAJBMaAQAAAIBkQiMAAAAAkExoBAAAAACSCY0AAAAAQLKCCI3XX3999OvXL0pLS+Pggw+OF198sa1HAgAAAAA20u5D46xZs+Liiy+Oyy67LObNmxff/OY3Y+jQobFixYq2Hg0AAAAA+D/tPjT+8pe/jDFjxsTZZ58dVVVVceONN0aXLl3itttua+vRAAAAAID/065D4/r162Pu3LkxZMiQpmUdOnSIIUOGxHPPPdeGkwEAAAAAG+vY1gN8mZUrV0Z9fX307Nmz2fKePXvGm2++ucn71NXVRV1dXdPnNTU1eZ0RAAAAAIjINDY2Nrb1EJuzZMmS2HnnnePZZ5+NQw89tGn5j3/845gzZ0688MILLe4zefLk+NnPftZi+erVq6Nr1655nZdtw9q1a6O8vDwiImpra6OsrKyNJwI2xb4KhcG+CoXBvgqwbaupqYnKysqv7Gvt+qXTO+ywQxQVFcXy5cubLV++fHn06tVrk/e55JJLYvXq1U2X999//+sYFQAAAAC2ae06NBYXF8cBBxwQs2fPblrW0NAQs2fPbnaE48ZKSkqia9euzS4AAAAAQH616/dojIi4+OKL46yzzooDDzwwDjrooLjuuuti7dq1cfbZZ7f1aAAAAADA/2n3ofG0006LDz/8MCZNmhTLli2LgQMHxqOPPtriBDEAAAAAQNtp96ExImLcuHExbty4th4DAAAAANiMdv0ejQAAAABAYRAaAQAAAIBkQiMAAAAAkExoBAAAAACSCY0AAAAAQDKhEQAAAABIJjQCAAAAAMmERgAAAAAgmdAIAAAAACQTGgEAAACAZEIjAAAAAJBMaAQAAAAAkgmNAAAAAEAyoREAAAAASCY0AgAAAADJhEYAAAAAIJnQCAAAAAAkExoBAAAAgGRCIwAAAACQTGgEAAAAAJIJjQAAAABAMqERAAAAAEgmNAIAAAAAyYRGAAAAACCZ0AgAAAAAJOvY1gMAQD6UlZVFY2NjW48BAACwzXBEIwAAAACQTGgEAAAAAJIJjQAAAABAMqERAAAAAEjmZDAAALQZJ24CANh6CI0AAAB8KX8UAKA1vHQaAAAAAEgmNAIAAAAAyYRGAAAAACCZ0AgAAAAAJBMaAQAAAIBkQiMAAAAAkExoBAAAAACSCY0AAAAAQDKhEQAAAABIJjQCAAAAAMmERgAAAAAgmdAIAAAAACQTGgEAAACAZEIjAAAAAJBMaAQAAAAAkgmNAAAAAEAyoREAAAAASCY0AgAAAADJhEYAAAAAIJnQCAAAAAAkExoBAAAAgGRCIwAAAACQTGgEAAAAAJIJjQAAAABAMqERAAAAAEgmNAIAAAAAyYRGAAAAACCZ0AgAAAAAJBMaAQAAAIBkQiMAAAAAkExoBAAAAACSCY0AAAAAQDKhEQAAAABIJjQCAAAAAMmERgAAAAAgmdAIAAAAACQTGgEAAACAZEIjAAAAAJBMaAQAAAAAkgmNAAAAAEAyoREAAAAASCY0AgAAAADJhEYAAAAAIJnQCAAAAAAkExoBAAAAgGRCIwAAAACQTGgEAAAAAJIJjQAAAABAMqERAAAAAEgmNAIAAAAAyYRGAAAAACCZ0AgAAAAAJBMaAQAAAIBkQiMAAAAAkExoBAAAAACSCY0AAAAAQDKhEQAAAABIJjQCAAAAAMmERgAAAAAgmdAIAAAAACQTGgEAAACAZEIjAAAAAJBMaAQAAAAAkgmNAAAAAEAyoREAAAAASCY0AgAAAADJhEYAAAAAIJnQCAAAAAAkExoBAAAAgGRCIwAAAACQTGgEAAAAAJIJjQAAAABAMqERAAAAAEgmNAIAAAAAyYRGAAAAACCZ0AgAAAAAJBMaAQAAAIBkQiMAAAAAkExoBAAAAACSCY0AAAAAQDKhEQAAAABIJjQCAAAAAMmERgAAAAAgmdAIAAAAACQTGgEAAACAZEIjAAAAAJBMaAQAAAAAkgmNAAAAAEAyoREAAAAASCY0AgAAAADJhEYAAAAAIJnQCAAAAAAkExoBAAAAgGRCIwAAAACQTGgEAAAAAJIJjQAAAABAMqERAAAAAEgmNAIAAAAAyYRGAAAAACCZ0AgAAAAAJBMaAQAAAIBkQiMAAAAAkExoBAAAAACSCY0AAAAAQDKhEQAAAABIJjQCAAAAAMmERgAAAAAgmdAIAAAAACQTGgEAAACAZEIjAAAAAJBMaAQAAAAAkgmNAAAAAEAyoREAAAAASCY0AgAAAADJhEYAAAAAIFnHth4ACk1ZWVk0Nja29RgAAAAA7YojGgEAAACAZEIjAAAAAJBMaAQAAAAAkgmNAAAAAEAyoREAAAAASCY0AgAAAADJhEYAAAAAIJnQCAAAAAAkExoBAAAAgGRCIwAAAACQTGgEAAAAAJIJjQAAAABAMqERAAAAAEgmNAIAAAAAyYRGAAAAACCZ0AgAAAAAJBMaAQAAAIBkQiMAAAAAkExoBAAAAACSCY0AAAAAQDKhEQAAAABIJjQCAAAAAMmERgAAAAAgmdAIAAAAACQTGgEAAACAZEIjAAAAAJBMaAQAAAAAkgmNAAAAAEAyoREAAAAASCY0AgAAAADJhEYAAAAAIJnQCAAAAAAkExoBAAAAgGRCIwAAAACQTGgEAAAAAJIJjQAAAABAMqERAAAAAEgmNAIAAAAAyYRGAAAAACCZ0AgAAAAAJOvY1gPkW2NjY0RE1NTUtPEkAAAAAFB4NnS1DZ1tc7b60LhmzZqIiOjbt28bTwIAAAAAhWvNmjVRWVm52eszjV+VIgtcQ0NDLFmyJCoqKiKTybT1OGwlampqom/fvvH+++9H165d23ocYDPsq1AY7KtQGOyrUBjsq+RDY2NjrFmzJnr37h0dOmz+nRi3+iMaO3ToEH369GnrMdhKde3a1RM3FAD7KhQG+yoUBvsqFAb7Krn2ZUcybuBkMAAAAABAMqERAAAAAEhWNHny5MltPQQUoqKiojjiiCOiY8et/h0IoKDZV6Ew2FehMNhXoTDYV2krW/3JYAAAAACA/PPSaQAAAAAgmdAIAAAAACQTGgEAAACAZEIj5FC/fv3iuuuua+sxcuKOO+6Ibt26feltJk+eHAMHDvyaJoLsbW2P0UwmEw888MBmr1+0aFFkMpl4+eWXv8apoO181T5RSFrzfDV69OgYPnz41zQRubQ1/Tzamh6Hrfm5+eSTT0Ymk4mPP/74a5wM2o+t6WctXw+hcRu2bNmyuOCCC6J///5RUlISffv2jWHDhsXs2bMjYvNPKF/85eKII46ITCYTmUwmSkpKYuedd45hw4bFfffdt9ltDxgwIEpKSmLZsmUtrtt4fRtfvv/97+fgq86NzUW4l156Kc4777ycbmv06NFN34Pi4uLYbbfd4vLLL4/PP/88p9v5otNOOy3+/Oc/53UbpPmqfbhfv35Nj52ysrL41re+FXfffXfT/Tf3H4Uv/kJ9xx13bHKfLC0t/Xq+0Fba1HPWhAkTmr4fubLh+7Ph0rNnzxg5cmS88847Od3OpixdujSOP/74vG+H/7epx/7Gl8mTJ7f1iK22udCx8XPFxpcpU6a0wZSbtrnZ87FPbPx7SGlpaVRVVcUNN9yQ021sSj6er/hyG/+O1alTp+jZs2ccc8wxcdttt0VDQ0Netz158uRN7ncDBgzI63azsbkI98///M9xxx135HRbG/+u0aFDh+jTp0+cffbZsWLFipxu54v69u0bS5cujX322Sev24EvSvk/nj8s0945z/k2atGiRTFo0KDo1q1b/OIXv4h99903Pvvss3jsscdi7Nix8eabb2a1vjFjxjQ9MS5evDjuv//+GDVqVIwePTpuvvnmZretrq6OTz75JL7zne/Ev/7rv8ZPfvKTza5vY126dMn+C/2a7bjjjnlZ73HHHRe333571NXVxR/+8IcYO3ZsdOrUKS655JIWt12/fn0UFxcnb7Nz587RuXPn5PV8lc8++yw6deqU9+1sbVq7D19++eUxZsyYqKmpiWnTpsVpp50WO++8cxx22GFZba9r166xYMGCZssymUzOvp58KS8vj/Ly8ryse8GCBVFRURFvvfVWnHfeeTFs2LB49dVXo6ioqNntGhsbo76+Pjp2TP+R26tXr+R1fJVcPYdsLZYuXdr08axZs2LSpEnN9oV8Pb621Kb+/TY8Br/MhueKjVVUVOR8vlzL1z6x4feQdevWxW9+85sYO3ZsdO/ePU4//fQWt83VPpPP56sNcvl8tLXY8DtWfX19LF++PB599NEYP3583HPPPfHggw/m9Xu19957xxNPPNFsWSH821RWVuZlvRt+12hoaIhXXnklzj777FiyZEk89thjLW5bX1/fFCVTFBUV+dlKm8nm/3j54v9i5IMjGrdR//iP/xiZTCZefPHFGDlyZOyxxx6x9957x8UXXxzPP/981uvr0qVL9OrVK/r06ROHHHJITJ06NW666aaYPn16i1+gbr311vjud78bZ555Ztx2221fur6NL127do2IiN/85jdRXl4eb731VrOvZ8CAAbFu3bqIiHj99dfj+OOPj/Ly8ujZs2eceeaZsXLlyqbbNzQ0xDXXXBO77bZblJSUxC677BI///nPI2LTL494+eWXI5PJxKJFi+LJJ5+Ms88+O1avXt3iiJYvvnT6vffei5NPPjnKy8uja9euceqpp8by5cubrt9whMadd94Z/fr1i8rKyhg1alSsWbOm2fejpKQkevXqFX/1V38V559/fgwZMiQefPDBiPj/o9J+/vOfR+/evWPPPfeMiIjXXnstjjrqqOjcuXNsv/32cd5550VtbW1ERPzHf/xHlJaWtngJyPjx4+Ooo46KiE0ftTllypTo2bNnVFRUxLnnnhuffvppi3+7W265Jfbaa68oLS2NAQMGNDsKZMNf32bNmhWHH354lJaWxowZM1qsg6/W2n24oqIievXqFXvssUdcf/310blz5/j973+f9fYymUyLfbJnz54REfHhhx9Gr1694qqrrmq6/bPPPhvFxcVNR+fU1dXFhAkTYuedd46ysrI4+OCD48knn2y2jWeeeSaOOOKI6NKlS3Tv3j2GDh0aH330UURs+m0JBg4c2Gzfi4g45ZRTIpPJNH3+xaOgGhoa4vLLL48+ffpESUlJDBw4MB599NGm6zc8Ru+777448sgjo0uXLvHNb34znnvuuRbfkx49esROO+0UgwcPjkmTJsUbb7wRCxcubHoOeeSRR+KAAw6IkpKSqK6ujrq6urjwwgujR48eUVpaGn/zN38TL730UtNcffr0iV//+tfNtjF//vzo0KFDvPvuu03/Dhsftfniiy/G/vvvH6WlpXHggQfG/PnzW8z5Vc+HRxxxRIwbNy5+8IMfxA477BBDhw5tsY5t2caP+crKyhb7wsyZM7/yOe/LHk/vvvtuDBs2LLp37x5lZWWx9957xx/+8Iem6+fMmRMHHXRQlJSUxE477RQTJ05sdrTDpv79NvUY/O1vfxs/+9nP4pVXXmn62bXxEUkbnis2vpSVlUXE/0bI3r17x6pVq5puf+KJJ8aRR/5Pe+ceFlX1/f83w3W4jJCaDohgIIRFpIl+lZSPoqKmkpqhDoIlJqhImgpGBZ/HvNAD5cdSUwkkg1JDTUXNS2h4SQXkEoxIE17BfAwFEUQY1u8PvnPizAwwaH0+n++v9Xoenoc5e59z9tlnr7X23mfvtUYIq75OnTqFYcOGQSqVwtHREYsWLcKDBw+E/A0NDYiKioKjoyPMzc3h6uqKL774AoB+e7N3717hY8a2bdvaLLu2TLRn+4A/bGZCQgLkcjm6du2KBQsWoLGxUXR/TT/kmWeeQVxcHPr27SvY3bZkpr13tWXLFtjb2+uskgsICMCbb74JQFdfqdVqLFmyBLa2tujatSuWL18OIhKd39zcjDVr1qBPnz6QSqXw8vLCt99+K6S3pY+YP9D0sRwcHDBgwAC8++67+O6773Do0CFRO0tKSsLkyZNhaWkpag/AH/V8/PhxDBw4EJaWlhg6dKjOBzptTExMdOSuW7duAIBLly7B0tIS6enpQv6dO3dCKpWipKQEAHDv3j2Ehoaie/fukMlkGDlyJAoKCkT32L9/P7y9vWFhYYFu3bph8uTJQpq+nQC2trbCc/fp0wcA0L9/fxgZGeEf//gHAN0dEe3Zt87Uj0a/2tvbY9y4cVi0aBGOHTuG+vp6QU/s27cP/fr1g7m5Oa5du4a7d+8iODgYdnZ2sLS0xLhx44QxQk1NDaRSKQ4dOiS6z549e2BjY4O6ujq9K8MOHjwINzc3SKVSjBgxAleuXNF5dx3pPGdnZ6xcuRLBwcGQyWR/+o4n5v8P9I3xdu7cCZlMJtLlQItdtLKywv3799uUTUP7ufrGYsnJyXjuuecEG7Zw4ULR/e/cudOmDmQYbXii8W9IVVUVDh8+jAULFgiDiNZ05JfPUEJCQmBnZyfaQn3//n3s2rULQUFBGD16NKqrq5Gdnd2p6wYHB2P8+PFQKBRoampCZmYmkpKSkJaWBktLS9y7dw8jR45E//79kZOTg8OHD+O3337D66+/LlxjxYoVWLt2Ld5//32UlJQgPT1dmDTpiKFDh2LdunWQyWSorKxEZWUlli5dqpOvubkZAQEBqKqqwsmTJ3H06FH8+uuvCAwMFOVTqVTYu3cvDhw4gAMHDuDkyZMdbleTSqV49OiR8Pv48eMoLS3F0aNHceDAATx48AD+/v6ws7PDhQsXsGvXLhw7dkwwGH5+frC1tUVGRoZwDbVajR07dkChUOi9586dOxEXF4fVq1cjJycHcrlcZytZWloaPvjgA6xatQpKpRKrV6/G+++/j9TUVFG+6OhoREZGQqlU8qTGY/C4MmxiYgJTU1NR2/kz6N69O5KTkxEXF4ecnBzcv38fs2bNwsKFC+Hn5wcAWLhwIc6ePYtvvvkGhYWFmDZtGsaOHSsMBvLz8+Hn54d+/frh7NmzOHXqFCZOnNjhKiwNmgFNSkoKKisrRQOc1vzrX/9CYmIiEhISUFhYCH9/f0yaNEn04QIAYmJisHTpUuTn58PNzQ0zZsxodyuLZvVv67qNjo7G2rVroVQq8cILL2D58uXIyMhAamoq8vLy4OrqCn9/f1RVVUEikWDGjBmiASXQIlM+Pj5wcnLSuWdtbS0mTJiAfv36ITc3F3FxcTq6yBB9CACpqakwMzPD6dOn8fnnn7f5nIwYQ3Vee+1pwYIFaGhowI8//oiioiLEx8cLq9pu3ryJ8ePHw9vbGwUFBdi0aRO++OILfPjhh6Lrt/X+WrfB0aNH45133sFzzz0n2C5te9QWMTExcHZ2RmhoKABgw4YNOHPmDFJTUyGRSKBSqTB27FhMnToVhYWF2LFjB06dOiUapAQHB+Prr7/G+vXroVQqsXnzZoNX7wUGBhpU9o5sn4asrCyoVCpkZWUhNTUV27Zt63AbqLbd1a7zjt7VtGnT8PvvvyMrK0u4hkaXt2V3ExMTsW3bNiQnJ+PUqVOoqqrCnj17RHnWrFmDL7/8Ep9//jmKi4uxePFiBAUF4eTJk6J82vqIaZ+RI0fCy8tL1If95z//iddffx2FhYVCP7Sqqkp0XkxMDBITE5GTkwMTExNhEvlxePbZZ5GQkID58+fj2rVruHHjBsLCwhAfH49+/foBaGlXt2/fxqFDh5Cbm4sBAwbAz89PKFdmZiYmT56M8ePH4+LFizh+/DgGDRpkcBnOnz8PADh27BgqKyvbdIvUnn1rTWfrRyqVorm5WdCXdXV1iI+PR1JSEoqLi/H0009j9uzZyMnJwb59+3D27FkQEcaPH4/GxkbIZDJMmDBBr2199dVX9e6Wun79OqZMmYKJEyciPz8foaGhiI6OFuUxROcBQEJCAry8vHDx4kW8//777T4rwwAtbV4ikWD69OlISUkRpaWKBi4aAAAXG0lEQVSkpOC1116DjY1Nm7JpaD9Xeyy2adMmLFiwAG+99RaKioqwb98+uLq6is4xRAcyjAAxfzvOnTtHAGj37t3t5gNAe/bs0TkeEhJCAQEBwm9fX1+KjIzUe43BgwfTuHHjhN9btmyhF198UfgdGRlJISEhonN8fX3J1NSUrKysRH9fffWVkKeqqop69epF4eHh1KNHD1q1apWQtnLlShozZozomtevXycAVFpaSjU1NWRubk5bt27VW+asrCwCQHfv3hWOXbx4kQBQeXk5ERGlpKRQly5ddM51cnKiTz75hIiIjhw5QsbGxnTt2jUhvbi4mADQ+fPniYgoNjaWLC0tqaamRsizbNkyGjx4sPC7dX03NzfT0aNHydzcnJYuXSqk9+jRgxoaGoRztmzZQnZ2dlRbWyscy8zMJIlEQrdu3SKilrofOXKkkP7999+Tubm58NzazzhkyBCaP3++6HkHDx5MXl5ewm8XFxdKT08X5Vm5ciUNGTKEiIjKy8sJAK1bt06n7hjDMVSGW7fHhoYGWr16NQGgAwcOEJGuLGvQloGUlBQCoCOTY8eOFZ03f/58cnNzo5kzZ5Knpyc9fPiQiIiuXr1KxsbGdPPmTVF+Pz8/WrFiBRERzZgxg3x8fAx6Fg1eXl4UGxsr/Nans2JjY0Vt1N7eXqQviIi8vb2Ftq1po0lJSUK6Rm6VSqXe+qmoqKChQ4eSg4MDNTQ0COl79+4VrlFbW0umpqaUlpYmHHv06BHZ29vTRx99REQtesbIyIiuXr1KRERqtZocHBxo06ZNep9x8+bN1LVrV6qvrxfSN23aRADo4sWLRNSxPiRq0bn9+/cnpmO09aKhOq+99uTp6UlxcXF67/fuu++Su7s7NTc3C8c2bNhA1tbWpFariUj/+9PXBol05UGDk5MTmZmZ6cj4jz/+KORRqVRkY2NDUVFRJJVKRW15zpw59NZbb4mumZ2dTRKJhOrr66m0tJQA0NGjR/U+pz6bumfPHmrdTW2r7K1lwhDbFxISQk5OTtTU1CTkmTZtGgUGBgq/W/drmpqaaPv27QSAPvvsMyFdu84NeVcBAQH05ptvCumbN28me3t7IV37GeVyuaAfiIgaGxupV69egt5++PAhWVpa0pkzZ0RlmTNnDs2YMYOI2m4LTAtt2UEiosDAQPLw8CCilnb23nvvCWm1tbUEgA4dOkREf9TzsWPHhDyZmZkEQNDR2u83NjaWJBKJjtzNmzdPVI5XXnmFhg0bRn5+fjRmzBihjWVnZ5NMJhNsrQYXFxfavHkzEbX03RQKRZvPr89udunShVJSUojoDx2msSn66s0Q+2ZI/WjrgcuXL5ObmxsNHDhQSAdA+fn5ojwA6PTp08KxO3fukFQqpZ07dxJRiy6xtramBw8eEBFRdXU1WVhYCO9O+xlXrFhB/fr1Ez1vVFSUyO53pPOIWvTqq6++qlPnDKOhvTHeuXPnyNjYmCoqKoiI6LfffiMTExM6ceIEEbUtm4b2c7XHYvb29hQTE9NmWTvSgQyjzX+/ExDmT4e0tt381fdq7cctOTkZQUFBwu+goCD4+vri008/FfmCUigUiImJEV2r9YpDOzs7fPHFF/D398fQoUNFXxoLCgqQlZWld6WESqXCvXv30NDQIKy0+qtQKpVwdHSEo6OjcKxfv36wtbWFUqmEt7c3gJatFa2fXS6X6zi+PnDgAKytrdHY2Ijm5mbMnDlTFIDA09NT5PdFqVTCy8tLtNrNx8cHzc3NKC0tRY8ePaBQKPA///M/qKiogL29PdLS0vDKK6+0uRpOqVTqBOQZMmSIsDrjwYMHUKlUmDNnjsjPV1NTk44vn4EDB7Zbd0z7dEaGo6Ki8N577+Hhw4ewtrbG2rVr8corr3T6njY2NsjLyxMd0/bhmZCQgOeffx67du1Cbm4uzM3NAbRsZVSr1XBzcxPlb2hoQNeuXQG0rGicNm1ap8vVGWpqalBRUQEfHx/RcR8fH52tZq1X/MjlcgDA7du3RU76e/XqBSJCXV0dvLy8kJGRIZLD1u1cpVKhsbFRdG9TU1MMGjQISqUSQMtWcA8PD6SnpyM6OhonT57E7du326wXzcqk1kF5hgwZIsrTkT7UvJOXXnpJ7z2YtumMzmuvPS1atAjh4eE4cuQIRo0ahalTpwr5lUolhgwZIrKjPj4+qK2txY0bN9C7d28Abb+/zujaZcuWYfbs2aJjDg4Owv/PPPMMEhISMG/ePAQGBmLmzJlCWkFBAQoLC0WuMIgIzc3NKC8vR1FREYyNjeHr62tweR4HQ2wf0OIXr7UvVblcjqKiItG1Nm7ciKSkJDx69AjGxsZYvHgxwsPDhXTtOjfkXSkUCsydOxcbN26Eubk50tLSMH36dL0+5qqrq1FZWYnBgwcLx0xMTDBw4EDBBvzyyy+oq6vD6NGjRec+evQI/fv3Fx1ju9t5tPuwreXYysoKMplMp7/WlqxrZFUbd3d3ne2HGldBGpKTk+Hm5gaJRILi4mKhTAUFBaitrRXsqIb6+nqoVCoALbZV2/fqn40h9k1DR/VTXV0Na2trNDc34+HDh3j55ZeRlJQknGNmZia6hlKphImJiUhOunbtCnd3d+He48ePh6mpKfbt24fp06cjIyMDMpkMo0aN0vs8SqVSdD1Av21tT+d5eHgAYLljOqatMZ7GlUpqaiqio6Px1VdfwcnJCcOHD2/zWp3p57Zum7dv30ZFRUWHY2NDdCDDaOCJxr8hffv2hZGRUYcBX2xsbFBdXa1z/N69ewY5gVar1SgrKxMm1EpKSvDTTz/h/PnzogAwarUa33zzjagj1KVLF53l2tr8+OOPMDY2RmVlJR48eCBM1tXW1mLixImIj4/XOUcul3cYGVbT4W89maPtu+nPRNv5rpGRkY4PpxEjRmDTpk0wMzODvb29jqNwfdtnO8Lb2xsuLi745ptvEB4ejj179jxRBEGND6ytW7fqdNC0g2M8TnmZPzBUhoE/Jg80/vlaD5pkMpng+6819+7dg7Gxseg9SSSSDmVSpVKhoqICzc3NuHLlCjw9PQG0tA1jY2Pk5ubqtAXNBFhHgYckEonOBOu/Sy41daYtl9nZ2ZDJZHj66af1Bs14nHauUCiEicb09HSMHTtWZxDZGTrSh09S1r87ndF57bWn0NBQ+Pv7IzMzE0eOHMGaNWuQmJiIiIgIg8vS1vvrzHvt1q2bwXb3ypUraGpqEmxRbW0t5s2bh0WLFumc07t3b/zyyy/tXvc/Kd+Afrur+eAplUohl8t1JgMfR2YmTpwIIkJmZia8vb2RnZ2NTz75pPMP8L9o2mBmZqZoUhiA8KHnScr7d0epVAp+0ADD2o0htqM1mkiz7VFQUIAHDx5AIpGgsrJS0N21tbWQy+U6/o6BP1yodGRbjYyM/qtsq+ajpkQigVwu1ym/VCrtdCA6MzMzvPbaa0hPT8f06dORnp6OwMDAJwq605HO08Byx3REe2O80NBQbNiwAdHR0UhJScEbb7zxpwVibN02DQ3+aYgOZBgN7KPxb8hTTz0Ff39/bNiwQeS0WIMmQIi7uztyc3NFaWq1GgUFBTork/SRmpqKu3fvYurUqQBagsAMHz4cBQUFyM/PF/6WLFkiOIQ3lDNnziA+Ph779++HtbW1yCfKgAEDUFxcDGdnZ7i6uor+rKys0LdvX0ilUiFIhTaayNGtI422dhANtHRaOvId5+HhgevXr+P69evCsZKSEty7d0/wrWMoVlZWcHV1Re/evQ3qGHl4eAgdUw2nT5+GRCIRgsUALQOptLQ07N+/HxKJpN2Vbh4eHjh37pzoWOugIz169IC9vT1+/fVXnXpv3VFnnhxDZRj4Y/KgZ8+eOp0Td3d3FBcXo6GhQXQ8Ly8Pffr06VQEukePHiEoKAiBgYFYuXIlQkNDha+c/fv3h1qtxu3bt3XahibS4wsvvNCmTAItctlaJmtqalBeXi7KY2pq2q5cymQy2Nvb4/Tp06Ljp0+f7rRMAi1O8l1cXAyKzOvi4iL4c9PQ2NiICxcuiO49c+ZM/Pzzz8jNzcW3337bpu82oEUmCwsLRUGZtIN5daQPmcfnz9R5jo6OCAsLw+7du/HOO+9g69atAFrescbnmIbTp0/DxsYGvXr16nSZDbFdbbFjxw7s3r0bJ06cwLVr17By5UohbcCAASgpKdGpB1dXV5iZmcHT0xPNzc06fgM1dO/eHffv3xfps8e1u4bYPkPQfPB0cHAwKKqtIe/KwsICU6ZMQVpaGr7++mu4u7tjwIABbd5fLpeL7G5TU5OoX9Y6IIZ2vbfeTcF0nh9++AFFRUVCH/Y/RVVVFWbPno2YmBjMnj0bCoUC9fX1AFrk7tatWzAxMdF5/5qAMp21rWVlZUJgRQDCKv32ZM9Q+2YImo+azzzzjEGTHx4eHmhqahLJye+//47S0lLRvRUKBQ4fPozi4mL88MMPHdpWjf87Dfpsa3s6j2EMpb0xXlBQEK5evYr169ejpKQEISEhQpo+2Xzcfq6NjQ2cnZ3b1RUM01l4ovFvyoYNG6BWqzFo0CBkZGSgrKwMSqUS69evF7YHLFmyBElJSdi4cSPKysqQn5+Pt956C3fv3hUcwmuoq6vDrVu3cOPGDfz000+IiopCWFgYwsPDMWLECDQ2NmL79u2YMWMGnn/+edFfaGgozp07h+LiYp3rtf7TRJ/VBJpYtGgRxo0bh7S0NOzYsUOIzLVgwQJUVVVhxowZuHDhAlQqFb7//nu88cYbUKvVsLCwQFRUFJYvX44vv/wSKpUKP/30kzDZqemgx8XFoaysDJmZmUhMTBQ9r7OzM2pra3H8+HHcuXNH1CnTMGrUKHh6ekKhUCAvLw/nz59HcHAwfH19//KtFAqFAhYWFggJCcHPP/+MrKwsREREYNasWaIt6JqyrVq1Cq+99prOCojWREZGIjk5GSkpKbh8+TJiY2NF7wxocRK8Zs0arF+/HpcvX0ZRURFSUlLw8ccf/2XP+nfFEBnuCIVCASMjIwQHByM3Nxe//PILkpOTsW7dOrzzzjuivESkI5O3bt0SvmTGxMSguroa69evR1RUFNzc3AQn725ublAoFAgODsbu3btRXl6O8+fPY82aNcjMzATQEqDpwoULmD9/PgoLC3Hp0iVs2rRJiI48cuRIbN++HdnZ2SgqKkJISIjOqjFNJ6m1vtBm2bJliI+Px44dO1BaWoro6Gjk5+cjMjLS8Mp/DKysrBAeHo5ly5bh8OHDKCkpwdy5c1FXV4c5c+aInmHo0KGYM2cO1Go1Jk2a1OY1Z86cCSMjI8ydOxclJSU4ePAgEhISRHk60ofMk/Fn6Ly3334b33//PcrLy5GXl4esrCxh2938+fNx/fp1RERE4NKlS/juu+8QGxuLJUuWGDT5pY2zszPKy8uRn5+PO3fuiD4y3L9/X0e+a2pqAAA3btxAeHg44uPj8fLLLyMlJQWrV68WBt9RUVE4c+YMFi5ciPz8fJSVleG7774TPgI6OzsjJCQEb775Jvbu3Yvy8nKcOHECO3fuBAAMHjwYlpaWePfdd6FSqZCenq6zwr69smsw1Pb9FRj6rhQKBTIzM5GcnNzuZAfQYnfXrl2LvXv34tKlS5g/f77oQ5KNjQ2WLl2KxYsXIzU1FSqVCnl5efj00091AhIxbdPQ0IBbt27h5s2byMvLw+rVqxEQEIAJEyYgODj4L713U1OTjtz99ttvQnpYWBgcHR3x3nvv4eOPP4ZarRaCfo0aNQpDhgzBq6++iiNHjuDKlSs4c+YMYmJikJOTAwCIjY3F119/jdjYWCiVSiHglIaRI0fis88+w8WLF5GTk4OwsDDRR8ann34aUqlUCCSmb6eTofbtr6Bv374ICAjA3LlzcerUKRQUFCAoKAgODg4ICAgQ8g0fPhw9e/aEQqFAnz59dFahtyYsLAxlZWVYtmwZSktL9eqjjnQew/wZ2NnZYcqUKVi2bBnGjBkj+sDYlmw+bj83Li4OiYmJWL9+PcrKygRbwjCPzb/fLSTz30JFRQUtWLBAcALv4OBAkyZNoqysLCFPWloavfTSS2RjY0M9evSg8ePHU0FBgeg6vr6+BIAAkJmZGcnlcpowYYIoUMW3334rcsaujYeHBy1evFjneq3//P39iYjojTfeEAWaICJKTEykp556im7cuEFELc6hJ0+eTLa2tiSVSunZZ5+lt99+W3CgrVar6cMPPyQnJycyNTWl3r170+rVq4XrnTp1ijw9PcnCwoKGDRtGu3btEgWDISIKCwujrl27EgAhIIV2wIqrV6/SpEmTyMrKimxsbGjatGmiOtDn3P6TTz4hJycn4Xd7jsrbSy8sLKQRI0aQhYUFPfXUUzR37ly6f/++Tr5BgwYRAPrhhx9Ex/U551+1ahV169aNrK2tKSQkhJYvX65T/rS0NHrxxRfJzMyM7OzsaPjw4UJbaMtxMfN4dCTD+gKoaFNaWkqTJ08me3t7srKyIi8vL9q6dasooIHGAbu+v8rKSsrKyiITExPKzs4WzikvLyeZTEYbN24kohbH8B988AE5OzuTqakpyeVymjx5MhUWFgrnnDhxgoYOHUrm5uZka2tL/v7+guP16upqCgwMJJlMRo6OjrRt2zadYDD79u0jV1dXMjExEWRIW8bUajXFxcWRg4MDmZqakpeXl8iRtb42evfuXQIg1Ku+gFGtaSu9vr6eIiIiqFu3bmRubk4+Pj5CYKjWbNy4kQBQcHCwThq0HPefPXuWvLy8yMzMjF588UXKyMjQKX9H+rC9gF6MGH16sbM6T7s9LVy4kFxcXMjc3Jy6d+9Os2bNojt37gj5T5w4Qd7e3mRmZkY9e/akqKgoamxsFNL1vb+22uDDhw9p6tSpZGtrSwCEgA9OTk565XvevHnU3NxMfn5+5O/vL9ILERER5OLiItiV8+fP0+jRo8na2pqsrKzohRdeEDmkr6+vp8WLF5NcLiczMzNydXWl5ORkIX3Pnj3k6upKUqmUJkyYQFu2bBEFg2mr7Noy0ZHt02czIyMjydfXt906bU1b6R29K6IWHSSXywkAqVQqUZq2vmpsbKTIyEiSyWRka2tLS5YsoeDgYFH5m5ubad26deTu7k6mpqbUvXt38vf3p5MnTxJRx/rq705ISIjQ3k1MTKh79+40atQoSk5OFoL0EHUcNMWQQIL6gsHokztzc3MiIkpNTSUrKyu6fPmycM65c+fI1NSUDh48SERENTU1FBERQfb29mRqakqOjo6kUChEgQgzMjIEHdWtWzeaMmWKkHbz5k0aM2YMWVlZUd++fengwYOi5yIi2rp1Kzk6OpJEIhHkRFuOOrJvTxJoUUNb6VVVVTRr1izq0qULSaVS8vf3F9WZhuXLlxMA+uCDD0TH9enp/fv3k6urK5mbm9OwYcMoOTlZp/wd6TxD+mDM35uOxnhERMePHycAQnCj1uiTzcfp52r4/PPPBVsil8spIiJCSOtIBzKMNkZE/8bIIAzDMAzDMAzDMAzDMEy7bN++HYsXL0ZFRQVvy2f+T8HBYBiGYRiGYRiGYRiGYf4LqKurQ2VlJdauXYt58+bxJCPzfw720cgwDMMwDMMwDMMwDPNfwEcffYRnn30WPXv2xIoVK/7TxWGYTsNbpxmGYRiGYRiGYRiGYRiGeWJ4RSPDMAzDMAzDMAzDMAzDME8MTzQyDMMwDMMwDMMwDMMwDPPE8EQjwzAMwzAMwzAMwzAMwzBPDE80MgzDMAzDMAzDMAzDMAzzxPBEI8MwDMMwDMMwDMMwDMMwTwxPNDIMwzAMwzAMwzAMwzAM88TwRCPDMAzDMAzDMAzDMAzDME8MTzQyDMMwDMMwDMMwDMMwDPPE8EQjwzAMwzAMwzAMwzAMwzBPzP8DhbqSz6iI/gIAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 1600x1200 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "%matplotlib inline\n",
    "\n",
    "import matplotlib\n",
    "import matplotlib.pyplot as plt\n",
    "import numpy as np\n",
    "import os\n",
    "\n",
    "# Compute average inference time + std\n",
    "time_results = {k: np.mean(v.model_inference_time) * 1e3 for k, v in results.items()}\n",
    "time_results_std = np.std([v.model_inference_time for v in results.values()]) * 1000\n",
    "\n",
    "plt.rcdefaults()\n",
    "fig, ax = plt.subplots(figsize=(16, 12))\n",
    "ax.set_ylabel(\"Avg Inference time (ms)\")\n",
    "ax.set_title(\"Average inference time (ms) for each provider\")\n",
    "ax.bar(time_results.keys(), time_results.values(), yerr=time_results_std)\n",
    "plt.show()"
   ]
  }
 ],
 "metadata": {
  "accelerator": "GPU",
  "colab": {
   "collapsed_sections": [],
   "name": "ONNX Overview",
   "provenance": [],
   "toc_visible": true
  },
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.6.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 1
492
}