modeling_openai.py 33.6 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# coding=utf-8
# Copyright 2018 The OpenAI Team Authors and HugginFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch OpenAI GPT model."""

thomwolf's avatar
thomwolf committed
18
import os
thomwolf's avatar
thomwolf committed
19
20
21
import copy
import json
import math
thomwolf's avatar
thomwolf committed
22
23
24
25
import logging
import tarfile
import tempfile
import shutil
thomwolf's avatar
thomwolf committed
26
27
28
29
import collections

import torch
import torch.nn as nn
thomwolf's avatar
thomwolf committed
30
from torch.nn import CrossEntropyLoss
thomwolf's avatar
thomwolf committed
31
32
33
from torch.nn.parameter import Parameter

from .modeling import BertLayerNorm as LayerNorm
thomwolf's avatar
thomwolf committed
34
from .file_utils import cached_path
thomwolf's avatar
thomwolf committed
35

thomwolf's avatar
thomwolf committed
36
37
38
39
40
41
42
logger = logging.getLogger(__name__)

PRETRAINED_MODEL_ARCHIVE_MAP = {
    'openai-gpt': "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt.tar.gz",
}
CONFIG_NAME = 'openai_gpt_config.json'
WEIGHTS_NAME = 'pytorch_model.bin'
thomwolf's avatar
thomwolf committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

def gelu(x):
    return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))


def swish(x):
    return x * torch.sigmoid(x)


ACT_FNS = {
    'relu': nn.ReLU,
    'swish': swish,
    'gelu': gelu
}

thomwolf's avatar
thomwolf committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
class OpenAIGPTConfig(object):
    """Configuration class to store the configuration of a `OpenAIGPTModel`.
    """
    def __init__(self,
                 vocab_size_or_config_json_file=40478,
                 n_special=0,
                 n_ctx=512,
                 n_embd=768,
                 n_layer=12,
                 n_head=12,
                 afn="gelu",
                 resid_pdrop=0.1,
                 embd_pdrop=0.1,
                 attn_pdrop=0.1,
                 initializer_range=0.02):
        """Constructs OpenAIGPTConfig.

        Args:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `OpenAIGPTModel` or a configuration json file.
            n_special: The number of special tokens to learn during fine-tuning ('[SEP]', '[CLF]', ...)
            n_ctx: Number of positional embeddings.
            n_embd: Dimensionality of the embeddings and hidden states.
            n_layer: Number of hidden layers in the Transformer encoder.
            n_head: Number of attention heads for each attention layer in
                the Transformer encoder.
            afn: The non-linear activation function (function or string) in the
                encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
            resid_pdrop: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            attn_pdrop: The dropout ratio for the attention
                probabilities.
            embd_pdrop: The dropout ratio for the embeddings.
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
        """
        if isinstance(vocab_size_or_config_json_file, str):
            with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.vocab_size = vocab_size_or_config_json_file
            self.n_special = n_special
            self.n_ctx = n_ctx
            self.n_embd = n_embd
            self.n_layer = n_layer
            self.n_head = n_head
            self.afn = afn
            self.resid_pdrop = resid_pdrop
            self.embd_pdrop = embd_pdrop
            self.attn_pdrop = attn_pdrop
            self.initializer_range = initializer_range
        else:
            raise ValueError("First argument must be either a vocabulary size (int)"
                             "or the path to a pretrained model config file (str)")

    @property
    def total_num_embeddings(self):
        return self.vocab_size + self.n_special + self.n_ctx

    @classmethod
    def from_dict(cls, json_object):
        """Constructs a `OpenAIGPTConfig` from a Python dictionary of parameters."""
        config = OpenAIGPTConfig(vocab_size_or_config_json_file=-1)
        for key, value in json_object.items():
            config.__dict__[key] = value
        return config

    @classmethod
    def from_json_file(cls, json_file):
        """Constructs a `OpenAIGPTConfig` from a json file of parameters."""
        with open(json_file, "r", encoding='utf-8') as reader:
            text = reader.read()
        return cls.from_dict(json.loads(text))

    def __repr__(self):
        return str(self.to_json_string())

    def to_dict(self):
        """Serializes this instance to a Python dictionary."""
        output = copy.deepcopy(self.__dict__)
        return output

    def to_json_string(self):
        """Serializes this instance to a JSON string."""
        return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"

thomwolf's avatar
thomwolf committed
145
146
147
148
149
150
151
152
class Conv1D(nn.Module):
    def __init__(self, nf, rf, nx):
        super(Conv1D, self).__init__()
        self.rf = rf
        self.nf = nf
        if rf == 1:  # faster 1x1 conv
            w = torch.empty(nx, nf)
            nn.init.normal_(w, std=0.02)
thomwolf's avatar
thomwolf committed
153
154
            self.weight = Parameter(w)
            self.bias = Parameter(torch.zeros(nf))
thomwolf's avatar
thomwolf committed
155
156
157
158
159
160
        else:  # was used to train LM
            raise NotImplementedError

    def forward(self, x):
        if self.rf == 1:
            size_out = x.size()[:-1] + (self.nf,)
thomwolf's avatar
thomwolf committed
161
            x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
thomwolf's avatar
thomwolf committed
162
163
164
165
166
167
168
            x = x.view(*size_out)
        else:
            raise NotImplementedError
        return x


class Attention(nn.Module):
169
    def __init__(self, nx, n_ctx, config, scale=False):
thomwolf's avatar
thomwolf committed
170
171
172
        super(Attention, self).__init__()
        n_state = nx  # in Attention: n_state=768 (nx=n_embd)
        # [switch nx => n_state from Block to Attention to keep identical to TF implem]
173
        assert n_state % config.n_head == 0
thomwolf's avatar
thomwolf committed
174
        self.register_buffer('b', torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
175
        self.n_head = config.n_head
thomwolf's avatar
thomwolf committed
176
177
178
179
        self.split_size = n_state
        self.scale = scale
        self.c_attn = Conv1D(n_state * 3, 1, nx)
        self.c_proj = Conv1D(n_state, 1, nx)
180
181
        self.attn_dropout = nn.Dropout(config.attn_pdrop)
        self.resid_dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
182
183
184
185
186

    def _attn(self, q, k, v):
        w = torch.matmul(q, k)
        if self.scale:
            w = w / math.sqrt(v.size(-1))
thomwolf's avatar
thomwolf committed
187
188
189
190
191
        # w = w * self.b + -1e9 * (1 - self.b)  # TF implem method: mask_attn_weights
        # XD: self.b may be larger than w, so we need to crop it
        b = self.b[:, :, :w.size(-2), :w.size(-1)]
        w = w * b + -1e9 * (1 - b)

thomwolf's avatar
thomwolf committed
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
        w = nn.Softmax(dim=-1)(w)
        w = self.attn_dropout(w)
        return torch.matmul(w, v)

    def merge_heads(self, x):
        x = x.permute(0, 2, 1, 3).contiguous()
        new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
        return x.view(*new_x_shape)  # in Tensorflow implem: fct merge_states

    def split_heads(self, x, k=False):
        new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
        x = x.view(*new_x_shape)  # in Tensorflow implem: fct split_states
        if k:
            return x.permute(0, 2, 3, 1)
        else:
            return x.permute(0, 2, 1, 3)

    def forward(self, x):
        x = self.c_attn(x)
        query, key, value = x.split(self.split_size, dim=2)
        query = self.split_heads(query)
        key = self.split_heads(key, k=True)
        value = self.split_heads(value)
        a = self._attn(query, key, value)
        a = self.merge_heads(a)
        a = self.c_proj(a)
        a = self.resid_dropout(a)
        return a


class MLP(nn.Module):
223
    def __init__(self, n_state, config):  # in MLP: n_state=3072 (4 * n_embd)
thomwolf's avatar
thomwolf committed
224
        super(MLP, self).__init__()
225
        nx = config.n_embd
thomwolf's avatar
thomwolf committed
226
227
        self.c_fc = Conv1D(n_state, 1, nx)
        self.c_proj = Conv1D(nx, 1, n_state)
228
229
        self.act = ACT_FNS[config.afn]
        self.dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
230
231
232
233
234
235
236
237

    def forward(self, x):
        h = self.act(self.c_fc(x))
        h2 = self.c_proj(h)
        return self.dropout(h2)


class Block(nn.Module):
238
    def __init__(self, n_ctx, config, scale=False):
thomwolf's avatar
thomwolf committed
239
        super(Block, self).__init__()
240
241
        nx = config.n_embd
        self.attn = Attention(nx, n_ctx, config, scale)
thomwolf's avatar
thomwolf committed
242
        self.ln_1 = LayerNorm(nx)
243
        self.mlp = MLP(4 * nx, config)
thomwolf's avatar
thomwolf committed
244
245
246
247
248
249
250
251
252
253
        self.ln_2 = LayerNorm(nx)

    def forward(self, x):
        a = self.attn(x)
        n = self.ln_1(x + a)
        m = self.mlp(n)
        h = self.ln_2(n + m)
        return h


thomwolf's avatar
thomwolf committed
254
class OpenAIGPTLMHead(nn.Module):
thomwolf's avatar
thomwolf committed
255
256
    """ Language Model Head for the transformer """

257
    def __init__(self, model_embeddings_weights, config):
thomwolf's avatar
thomwolf committed
258
        super(OpenAIGPTLMHead, self).__init__()
259
        self.n_embd = config.n_embd
thomwolf's avatar
thomwolf committed
260
261
262
263
        self.set_embeddings_weights(model_embeddings_weights)

    def set_embeddings_weights(self, model_embeddings_weights):
        embed_shape = model_embeddings_weights.shape
thomwolf's avatar
thomwolf committed
264
        self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False)
thomwolf's avatar
thomwolf committed
265
        self.decoder.weight = model_embeddings_weights # Tied weights
thomwolf's avatar
thomwolf committed
266

thomwolf's avatar
thomwolf committed
267
    def forward(self, hidden_state):
thomwolf's avatar
thomwolf committed
268
        # Truncated Language modeling logits (we remove the last token)
thomwolf's avatar
thomwolf committed
269
270
        # h_trunc = h[:, :-1].contiguous().view(-1, self.n_embd)
        lm_logits = self.decoder(hidden_state)
thomwolf's avatar
thomwolf committed
271
272
273
        return lm_logits


thomwolf's avatar
thomwolf committed
274
class OpenAIGPTMultipleChoiceHead(nn.Module):
thomwolf's avatar
thomwolf committed
275
276
    """ Classifier Head for the transformer """

277
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
278
        super(OpenAIGPTMultipleChoiceHead, self).__init__()
279
        self.n_embd = config.n_embd
thomwolf's avatar
thomwolf committed
280
        # self.multiple_choice_token = multiple_choice_token
281
282
        self.dropout = nn.Dropout2d(config.resid_pdrop)  # To reproduce the noise_shape parameter of TF implementation
        self.linear = nn.Linear(config.n_embd, 1)
thomwolf's avatar
thomwolf committed
283
284
285
286

        nn.init.normal_(self.linear.weight, std = 0.02)
        nn.init.normal_(self.linear.bias, 0)

thomwolf's avatar
thomwolf committed
287
    def forward(self, hidden_states, multiple_choice_token_mask):
thomwolf's avatar
thomwolf committed
288
        # Classification logits
thomwolf's avatar
thomwolf committed
289
        # hidden_states = hidden_states.view(-1, self.n_embd)
thomwolf's avatar
thomwolf committed
290
291
        # multiple_choice_token_mask = multiple_choice_token_mask.view(-1, 1).expand_as(hidden_states)
        multiple_choice_h = hidden_states * multiple_choice_token_mask.unsqueeze(-1)
thomwolf's avatar
thomwolf committed
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
        multiple_choice_h = multiple_choice_h.sum(dim=-2)
        # flat = x[..., 0].contiguous().view(-1)
        # multiple_choice_h = multiple_choice_h[flat == self.multiple_choice_token, :]
        # multiple_choice_h = multiple_choice_h.view(-1, x.size(1), self.n_embd, 1)
        # # This double transposition is there to replicate the behavior
        # # of the noise_shape argument in the tensorflow
        # # implementation.  For more details, see
        # # https://github.com/huggingface/pytorch-openai-transformer-lm/issues/11
        # multiple_choice_h = self.dropout(multiple_choice_h.transpose(1, 2)).transpose(1, 2)
        # multiple_choice_h = multiple_choice_h.contiguous().view(-1, self.n_embd)
        multiple_choice_logits = self.linear(multiple_choice_h).squeeze(-1)
        return multiple_choice_logits


class OpenAIGPTPreTrainedModel(nn.Module):
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
    def __init__(self, config, *inputs, **kwargs):
        super(OpenAIGPTPreTrainedModel, self).__init__()
        if not isinstance(config, OpenAIGPTConfig):
            raise ValueError(
                "Parameter config in `{}(config)` should be an instance of class `OpenAIGPTConfig`. "
                "To create a model from a pretrained model use "
                "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                    self.__class__.__name__, self.__class__.__name__
                ))
        self.config = config

    def init_weights(self, module):
        """ Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()
thomwolf's avatar
thomwolf committed
333

thomwolf's avatar
thomwolf committed
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
    def set_num_special_tokens(self, num_special_tokens):
        pass

    @classmethod
    def from_pretrained(cls, pretrained_model_name, num_special_tokens=0, state_dict=None, cache_dir=None,
                        *inputs, **kwargs):
        """
        Instantiate a OpenAIGPTPreTrainedModel from a pre-trained model file or a pytorch state dict.
        Download and cache the pre-trained model file if needed.

        Params:
            pretrained_model_name: either:
                - a str with the name of a pre-trained model to load selected in the list of:
                    . `openai-gpt`
                - a path or url to a pretrained model archive containing:
                    . `openai_gpt_config.json` a configuration file for the model
                    . `pytorch_model.bin` a PyTorch dump of a OpenAIGPTModel instance
            cache_dir: an optional path to a folder in which the pre-trained models will be cached.
            state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of pre-trained models
            *inputs, **kwargs: additional input for the specific Bert class
                (ex: num_labels for BertForSequenceClassification)
        """
        if pretrained_model_name in PRETRAINED_MODEL_ARCHIVE_MAP:
            archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name]
        else:
            archive_file = pretrained_model_name
        # redirect to the cache, if necessary
        try:
            resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir)
        except FileNotFoundError:
            logger.error(
                "Model name '{}' was not found in model name list ({}). "
                "We assumed '{}' was a path or url but couldn't find any file "
                "associated to this path or url.".format(
                    pretrained_model_name,
                    ', '.join(PRETRAINED_MODEL_ARCHIVE_MAP.keys()),
                    archive_file))
            return None
        if resolved_archive_file == archive_file:
            logger.info("loading archive file {}".format(archive_file))
        else:
            logger.info("loading archive file {} from cache at {}".format(
                archive_file, resolved_archive_file))
        tempdir = None
        if os.path.isdir(resolved_archive_file):
            serialization_dir = resolved_archive_file
        else:
            # Extract archive to temp dir
            tempdir = tempfile.mkdtemp()
            logger.info("extracting archive file {} to temp dir {}".format(
                resolved_archive_file, tempdir))
            with tarfile.open(resolved_archive_file, 'r:gz') as archive:
                archive.extractall(tempdir)
            serialization_dir = tempdir
        # Load config
        config_file = os.path.join(serialization_dir, CONFIG_NAME)
        config = OpenAIGPTConfig.from_json_file(config_file)
        logger.info("Model config {}".format(config))
        # Instantiate model.
        model = cls(config, *inputs, **kwargs)
        if state_dict is None:
            weights_path = os.path.join(serialization_dir, WEIGHTS_NAME)
            state_dict = torch.load(weights_path)

        old_keys = []
        new_keys = []
        for key in state_dict.keys():
            new_key = None
            if 'gamma' in key:
                new_key = key.replace('gamma', 'weight')
            if 'beta' in key:
                new_key = key.replace('beta', 'bias')
            if new_key:
                old_keys.append(key)
                new_keys.append(new_key)
        for old_key, new_key in zip(old_keys, new_keys):
            state_dict[new_key] = state_dict.pop(old_key)

        missing_keys = []
        unexpected_keys = []
        error_msgs = []
        # copy state_dict so _load_from_state_dict can modify it
        metadata = getattr(state_dict, '_metadata', None)
        state_dict = state_dict.copy()
        if metadata is not None:
            state_dict._metadata = metadata

        def load(module, prefix=''):
            local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
            module._load_from_state_dict(
                state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs)
            for name, child in module._modules.items():
                if child is not None:
                    load(child, prefix + name + '.')
        load(model.transformer if hasattr(model, 'transformer') else model, prefix='')
        if len(missing_keys) > 0:
            logger.info("Weights of {} not initialized from pretrained model: {}".format(
                model.__class__.__name__, missing_keys))
        if len(unexpected_keys) > 0:
            logger.info("Weights from pretrained model not used in {}: {}".format(
                model.__class__.__name__, unexpected_keys))
        if len(error_msgs) > 0:
            raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
                               model.__class__.__name__, "\n\t".join(error_msgs)))
        # Add additional embeddings for special tokens if needed
        if num_special_tokens != config.n_special:
            model.set_num_special_tokens(num_special_tokens)
        if tempdir:
            # Clean up temp dir
            shutil.rmtree(tempdir)
        return model
thomwolf's avatar
thomwolf committed
445
446


thomwolf's avatar
thomwolf committed
447
class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
    """OpenAI GPT model ("Improving Language Understanding by Generative Pre-Training").

    The main implementation difference between BERT and the OpenAI is the use, in OpenAI GPT, of a single embedding matrix
    to store the word, special ([SEP], [CLS]...) and position embeddings.
    The embeddings are ordered as follow in the word embeddings matrice:
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
         config.vocab_size + config.n_special - 1,                  ______________________
         config.vocab_size + config.n_special,
         ...                                                        -> position embeddings
         total_num_embeddings - 1]                                  ______________________

    where total_num_embeddings can be obtained as config.total_num_embeddings and is:
        total_num_embeddings = config.vocab_size + config.n_special + config.n_ctx
    You should use the associate indices to index the embeddings.

    The special embeddings ([SEP], [CLS]...) are not pre-trained and need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    Params:
        config: a OpenAIGPTConfig class instance with the configuration to build a new model

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
            were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, config.vocab_size[
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
            with the position indices (selected in the range [config.vocab_size + config.n_special, config.vocab_size + config.n_special + config.n_ctx - 1[.
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
            You can use it to add a third embedding (the previous two being the word and position embeddings)
            to each token in the sentence.

    Outputs:
        `hidden_states`: the encoded-hidden-states at the top of the model
            as a torch.FloatTensor of size [batch_size, sequence_length, hidden_size]
            (or more generally [d_1, ..., d_n, hidden_size] were d_1 ... d_n are the dimension of input_ids)

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])

    config = modeling_openai.OpenAIGPTConfig()

    model = modeling_openai.OpenAIGPTModel(config)
    hidden_states = model(input_ids)
    ```
    """
    def __init__(self, config):
        super(OpenAIGPTModel, self).__init__(config)
        total_embeddings_size = config.vocab_size + config.n_special + config.n_ctx
        self.embed = nn.Embedding(total_embeddings_size, config.n_embd)
        self.drop = nn.Dropout(config.embd_pdrop)
        block = Block(config.n_ctx, config, scale=True)
        self.h = nn.ModuleList([copy.deepcopy(block) for _ in range(config.n_layer)])
thomwolf's avatar
thomwolf committed
505

thomwolf's avatar
thomwolf committed
506
507
508
509
        self.apply(self.init_weights)
        # nn.init.normal_(self.embed.weight, std=0.02)

    def set_num_special_tokens(self, num_special_tokens):
thomwolf's avatar
thomwolf committed
510
        " Update input embeddings with new embedding matrice "
thomwolf's avatar
thomwolf committed
511
512
513
514
515
516
517
518
519
520
        # Update config
        self.config.n_special = num_special_tokens
        # # Build new embeddings and initialize
        old_embed = self.embed
        self.embed = nn.Embedding(self.config.total_num_embeddings, self.config.n_embd)
        # Initialize all new embeddings (in particular the special tokens)
        self.init_weights(self.embed)
        # Copy word and positional embeddings from the previous weights
        self.embed.weight.data[:self.config.vocab_size, :] = old_embed.weight.data[:self.config.vocab_size, :]
        self.embed.weight.data[-self.config.n_ctx:, :] = old_embed.weight.data[-self.config.n_ctx:, :]
thomwolf's avatar
thomwolf committed
521

thomwolf's avatar
thomwolf committed
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
    def forward(self, input_ids, position_ids=None, token_type_ids=None):
        if position_ids is None:
            start = self.config.vocab_size + self.config.n_special
            end = start + input_ids.size(-1)
            position_ids = torch.arange(start, end, dtype=torch.long, device=input_ids.device)
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)

        input_shape = input_ids.size()
        input_ids = input_ids.view(-1, input_ids.size(-1))
        position_ids = position_ids.view(-1, position_ids.size(-1))

        inputs_embeds = self.embed(input_ids)
        position_embeds = self.embed(position_ids)
        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
            token_type_embeds = self.embed(token_type_ids)
        else:
            token_type_embeds = 0
thomwolf's avatar
thomwolf committed
540
        # Add the position information to the input embeddings
thomwolf's avatar
thomwolf committed
541
542
        # h = e.sum(dim=2)
        hidden_states = inputs_embeds + position_embeds + token_type_embeds
thomwolf's avatar
thomwolf committed
543
        for block in self.h:
thomwolf's avatar
thomwolf committed
544
545
            hidden_states = block(hidden_states)
        return hidden_states.view(*input_shape, hidden_states.size(-1))
thomwolf's avatar
thomwolf committed
546

thomwolf's avatar
thomwolf committed
547
class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel):
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
    """OpenAI GPT model with a Language Modeling head ("Improving Language Understanding by Generative Pre-Training").

    There are two main implementation differences between BERT and the OpenAI GPT:
        - the use of an LM loss in OpenAI GPT which means the Transformer is trained to predict the NEXT token for each input token
            vs. predict the SAME token for BERT (i.e. you need to shift your labels to the right)
        - the use, in OpenAI GPT, of a single embedding matrix to store the word, special ([SEP], [CLS]...) and position embeddings.
    The embeddings are ordered as follow in the word embeddings matrice:
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
         config.vocab_size + config.n_special - 1,                  ______________________
         config.vocab_size + config.n_special,
         ...                                                        -> position embeddings
         total_num_embeddings - 1]                                  ______________________

    where total_num_embeddings can be obtained as config.total_num_embeddings and is:
        total_num_embeddings = config.vocab_size + config.n_special + config.n_ctx
    You should use these indices to index the word, special and position embeddings.

    The special embeddings ([SEP], [CLS]...) are not pre-trained and need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    Params:
        config: a OpenAIGPTConfig class instance with the configuration to build a new model

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
            were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, config.vocab_size[
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
            with the position indices (selected in the range [config.vocab_size + config.n_special, config.vocab_size + config.n_special + config.n_ctx - 1[.
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
            You can use it to add a third embedding (the previous two being the word and position embeddings)
            to each token in the sentence.
        `lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
            with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., vocab_size]

    Outputs:
        if `lm_labels` is not `None`:
            Outputs the language modeling loss.
        else:
            `lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, sequence_length, total_num_embeddings]
                (or more generally [d_1, ..., d_n, total_num_embeddings] were d_1 ... d_n are the dimension of input_ids)

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])

    config = modeling_openai.OpenAIGPTConfig()

    model = modeling_openai.OpenAIGPTLMHeadModel(config)
    lm_logits = model(input_ids)
    ```
    """
    def __init__(self, config):
        super(OpenAIGPTLMHeadModel, self).__init__(config)
        self.transformer = OpenAIGPTModel(config)
        self.lm_head = OpenAIGPTLMHead(self.transformer.embed.weight, config)
thomwolf's avatar
thomwolf committed
609
610
611
612
613
614
615
616
617
618
619
        self.apply(self.init_weights)

    def set_num_special_tokens(self, num_special_tokens):
        " Update input and output embeddings with new embedding matrice "
        self.transformer.set_num_special_tokens(num_special_tokens)
        self.lm_head.set_embeddings_weights(self.transformer.embed.weight)

    def forward(self, input_ids, position_ids=None, token_type_ids=None, lm_labels=None):
        hidden_states = self.transformer(input_ids, position_ids, token_type_ids)
        lm_logits = self.lm_head(hidden_states)
        if lm_labels is not None:
thomwolf's avatar
thomwolf committed
620
621
            loss_fct = CrossEntropyLoss(ignore_index=-1)
            loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), lm_labels.view(-1))
thomwolf's avatar
thomwolf committed
622
623
            return loss
        return lm_logits
thomwolf's avatar
thomwolf committed
624

thomwolf's avatar
thomwolf committed
625
class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
    """OpenAI GPT model with a Language Modeling and a Multiple Choice heads ("Improving Language Understanding by Generative Pre-Training").

    There are two main implementation differences between BERT and the OpenAI GPT:
        - the use of an LM loss in OpenAI GPT which means the Transformer is trained to predict the NEXT token for each input token
            vs. predict the SAME token for BERT (i.e. you need to shift your labels to the right)
        - the use, in OpenAI GPT, of a single embedding matrix to store the word, special ([SEP], [CLS]...) and position embeddings.
    The embeddings are ordered as follow in the word embeddings matrice:
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
         config.vocab_size + config.n_special - 1,                  ______________________
         config.vocab_size + config.n_special,
         ...                                                        -> position embeddings
         total_num_embeddings - 1]                                  ______________________

    where total_num_embeddings can be obtained as config.total_num_embeddings and is:
        total_num_embeddings = config.vocab_size + config.n_special + config.n_ctx
    You should use these indices to index the word, special and position embeddings.

    The special embeddings ([SEP], [CLS]...) are not pre-trained and need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    Params:
        config: a OpenAIGPTConfig class instance with the configuration to build a new model

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length]
            with the word BPE token indices selected in the range [0, config.vocab_size[
        `multiple_choice_token_mask`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length]
            with a value of 1 were the last hidden state is (usually the [CLS] token) and 0 otherwise.
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
            with the position indices (selected in the range [config.vocab_size + config.n_special,
            config.vocab_size + config.n_special + config.n_ctx - 1[.
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
            You can use it to add a third embedding (the previous two being the word and position embeddings)
            to each token in the sentence.
        `lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, num_choices, sequence_length]
            with indices selected in [-1, 0, ..., total_num_embeddings]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., total_num_embeddings]
        `multiple_choice_labels`: optional multiple choice labels: torch.LongTensor of shape [batch_size]
            with indices selected in [0, ..., num_choices].

    Outputs:
        if `lm_labels` and `multiple_choice_labels` are not `None`:
            Outputs a tuple of losses with the language modeling loss and the multiple choice loss.
        else: a tuple with
            `lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, num_choices, sequence_length, total_num_embeddings]
            `multiple_choice_logits`: the multiple choice logits as a torch.FloatTensor of size [batch_size, num_choices]

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    multiple_choice_token_mask = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

    config = modeling_openai.OpenAIGPTConfig()

    model = modeling_openai.OpenAIGPTLMHeadModel(config)
    lm_logits, multiple_choice_logits = model(input_ids, multiple_choice_token_mask)
    ```
    """
    def __init__(self, config):
        super(OpenAIGPTDoubleHeadsModel, self).__init__(config)
        self.transformer = OpenAIGPTModel(config)
        self.lm_head = OpenAIGPTLMHead(self.transformer.embed.weight, config)
        self.multiple_choice_head = OpenAIGPTMultipleChoiceHead(config)
thomwolf's avatar
thomwolf committed
694
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
695

thomwolf's avatar
thomwolf committed
696
697
698
699
    def set_num_special_tokens(self, num_special_tokens):
        " Update input and output embeddings with new embedding matrice "
        self.transformer.set_num_special_tokens(num_special_tokens)
        self.lm_head.set_embeddings_weights(self.transformer.embed.weight)
thomwolf's avatar
thomwolf committed
700

thomwolf's avatar
thomwolf committed
701
    def forward(self, input_ids, multiple_choice_token_mask, position_ids=None, token_type_ids=None,
thomwolf's avatar
thomwolf committed
702
703
704
                lm_labels=None, multiple_choice_labels=None):
        hidden_states = self.transformer(input_ids, position_ids, token_type_ids)
        lm_logits = self.lm_head(hidden_states)
thomwolf's avatar
thomwolf committed
705
        multiple_choice_logits = self.multiple_choice_head(hidden_states, multiple_choice_token_mask)
thomwolf's avatar
thomwolf committed
706
707
        losses = []
        if lm_labels is not None:
thomwolf's avatar
thomwolf committed
708
709
710
            loss_fct = CrossEntropyLoss(ignore_index=-1)
            losses.append(loss_fct(lm_logits.view(-1, lm_logits.size(-1)), lm_labels.view(-1)))
        if multiple_choice_labels is not None:
thomwolf's avatar
thomwolf committed
711
            loss_fct = CrossEntropyLoss()
thomwolf's avatar
thomwolf committed
712
            losses.append(loss_fct(multiple_choice_logits, multiple_choice_labels.view(-1)))
thomwolf's avatar
thomwolf committed
713
714
        if losses:
            return losses
thomwolf's avatar
thomwolf committed
715
        return lm_logits, multiple_choice_logits