run_asr.py 10.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
#!/usr/bin/env python3
from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional, Union

import datasets
import numpy as np
import torch
import torch.nn as nn
from packaging import version

import soundfile as sf
from transformers import (
    HfArgumentParser,
    Trainer,
    TrainingArguments,
    Wav2Vec2ForCTC,
    Wav2Vec2Processor,
    is_apex_available,
)


if is_apex_available():
    from apex import amp


if version.parse(torch.__version__) >= version.parse("1.6"):
    _is_native_amp_available = True
    from torch.cuda.amp import autocast


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
    )
    freeze_feature_extractor: Optional[bool] = field(
        default=True, metadata={"help": "Whether to freeze the feature extractor layers of the model."}
    )


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.

    Using `HfArgumentParser` we can turn this class
    into argparse arguments to be able to specify them on
    the command line.
    """

    dataset_name: str = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    train_split_name: Optional[str] = field(
        default="train",
        metadata={
            "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
        },
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )


@dataclass
class DataCollatorCTCWithPadding:
    """
    Data collator that will dynamically pad the inputs received.
    Args:
        processor (:class:`~transformers.Wav2Vec2Processor`)
            The processor used for proccessing the data.
        padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
            Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
            among:
            * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
              sequence if provided).
            * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
              maximum acceptable input length for the model if that argument is not provided.
            * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
              different lengths).
        max_length (:obj:`int`, `optional`):
            Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
        max_length_labels (:obj:`int`, `optional`):
            Maximum length of the ``labels`` returned list and optionally padding length (see above).
        pad_to_multiple_of (:obj:`int`, `optional`):
            If set will pad the sequence to a multiple of the provided value.
            This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
            7.5 (Volta).
    """

    processor: Wav2Vec2Processor
    padding: Union[bool, str] = True
    max_length: Optional[int] = None
    max_length_labels: Optional[int] = None
    pad_to_multiple_of: Optional[int] = None
    pad_to_multiple_of_labels: Optional[int] = None

    def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
        # split inputs and labels since they have to be of different lenghts and need
        # different padding methods
        input_features = [{"input_values": feature["input_values"]} for feature in features]
        label_features = [{"input_ids": feature["labels"]} for feature in features]

        batch = self.processor.pad(
            input_features,
            padding=self.padding,
            max_length=self.max_length,
            pad_to_multiple_of=self.pad_to_multiple_of,
            return_tensors="pt",
        )
        with self.processor.as_target_processor():
            labels_batch = self.processor.pad(
                label_features,
                padding=self.padding,
                max_length=self.max_length_labels,
                pad_to_multiple_of=self.pad_to_multiple_of_labels,
                return_tensors="pt",
            )

        # replace padding with -100 to ignore loss correctly
        labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)

        batch["labels"] = labels

        return batch


class CTCTrainer(Trainer):
    def training_step(self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]) -> torch.Tensor:
        """
        Perform a training step on a batch of inputs.

        Subclass and override to inject custom behavior.

        Args:
            model (:obj:`nn.Module`):
                The model to train.
            inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`):
                The inputs and targets of the model.

                The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
                argument :obj:`labels`. Check your model's documentation for all accepted arguments.

        Return:
            :obj:`torch.Tensor`: The tensor with training loss on this batch.
        """

        model.train()
        inputs = self._prepare_inputs(inputs)

        if self.use_amp:
            with autocast():
                loss = self.compute_loss(model, inputs)
        else:
            loss = self.compute_loss(model, inputs)

        if self.args.n_gpu > 1:
            if model.module.config.ctc_loss_reduction == "mean":
                loss = loss.mean()
            elif model.module.config.ctc_loss_reduction == "sum":
                loss = loss.sum() / (inputs["labels"] >= 0).sum()
            else:
                raise ValueError(f"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']")

        if self.args.gradient_accumulation_steps > 1:
            loss = loss / self.args.gradient_accumulation_steps

        if self.use_amp:
            self.scaler.scale(loss).backward()
        elif self.use_apex:
            with amp.scale_loss(loss, self.optimizer) as scaled_loss:
                scaled_loss.backward()
        elif self.deepspeed:
            self.deepspeed.backward(loss)
        else:
            loss.backward()

        return loss.detach()


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))

    model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    model = Wav2Vec2ForCTC.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir)
    processor = Wav2Vec2Processor.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir)

    train_dataset = datasets.load_dataset(
        data_args.dataset_name, data_args.dataset_config_name, split=data_args.train_split_name
    )
    val_dataset = datasets.load_dataset(data_args.dataset_name, data_args.dataset_config_name, split="validation")

    wer_metric = datasets.load_metric("wer")

    def map_to_array(batch):
        speech_array, sampling_rate = sf.read(batch["file"])
        batch["speech"] = speech_array
        batch["sampling_rate"] = sampling_rate
        return batch

    train_dataset = train_dataset.map(map_to_array, remove_columns=["file"])
    val_dataset = val_dataset.map(map_to_array, remove_columns=["file"])

    def prepare_dataset(batch):
        # check that all files have the correct sampling rate
        assert (
            len(set(batch["sampling_rate"])) == 1
        ), f"Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}."

        batch["input_values"] = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0]).input_values
        with processor.as_target_processor():
            batch["labels"] = processor(batch["text"]).input_ids
        return batch

    train_dataset = train_dataset.map(
        prepare_dataset,
        batch_size=training_args.per_device_train_batch_size,
        batched=True,
        num_proc=data_args.preprocessing_num_workers,
    )
    val_dataset = val_dataset.map(
        prepare_dataset,
        batch_size=training_args.per_device_train_batch_size,
        batched=True,
        num_proc=data_args.preprocessing_num_workers,
    )

    data_collator = DataCollatorCTCWithPadding(processor=processor, padding=True)

    def compute_metrics(pred):
        pred_logits = pred.predictions
        pred_ids = np.argmax(pred_logits, axis=-1)

Patrick von Platen's avatar
Patrick von Platen committed
254
        pred.label_ids[pred.label_ids == -100] = processor.tokenizer.pad_token_id
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

        pred_str = processor.batch_decode(pred_ids)
        # we do not want to group tokens when computing the metrics
        label_str = processor.batch_decode(pred.label_ids, group_tokens=False)

        wer = wer_metric.compute(predictions=pred_str, references=label_str)

        return {"wer": wer}

    if model_args.freeze_feature_extractor:
        model.freeze_feature_extractor()

    trainer = CTCTrainer(
        model=model,
        data_collator=data_collator,
        args=training_args,
        compute_metrics=compute_metrics,
        train_dataset=train_dataset,
        eval_dataset=val_dataset,
        tokenizer=processor.feature_extractor,
    )

    trainer.train()


if __name__ == "__main__":
    main()