test_tokenization_fast.py 11.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import concurrent.futures
17
18
import json
import os
19
20
import shutil
import tempfile
21
22
import unittest

23
from transformers import AutoTokenizer, PreTrainedTokenizerFast
24
25
from transformers.testing_utils import require_tokenizers

26
from ..test_tokenization_common import TokenizerTesterMixin
27
28
29
30
31
32
33
34
35
36
37
38
39
40


@require_tokenizers
class PreTrainedTokenizationFastTest(TokenizerTesterMixin, unittest.TestCase):
    rust_tokenizer_class = PreTrainedTokenizerFast
    test_slow_tokenizer = False
    test_rust_tokenizer = True
    from_pretrained_vocab_key = "tokenizer_file"

    def setUp(self):
        self.test_rust_tokenizer = False  # because we don't have pretrained_vocab_files_map
        super().setUp()
        self.test_rust_tokenizer = True

41
        model_paths = ["robot-test/dummy-tokenizer-fast", "robot-test/dummy-tokenizer-wordlevel"]
42
        self.bytelevel_bpe_model_name = "SaulLu/dummy-tokenizer-bytelevel-bpe"
43

44
45
46
47
        # Inclusion of 2 tokenizers to test different types of models (Unigram and WordLevel for the moment)
        self.tokenizers_list = [(PreTrainedTokenizerFast, model_path, {}) for model_path in model_paths]

        tokenizer = PreTrainedTokenizerFast.from_pretrained(model_paths[0])
48
49
        tokenizer.save_pretrained(self.tmpdirname)

50
51
52
53
54
    def test_tokenizer_mismatch_warning(self):
        # We disable this test for PreTrainedTokenizerFast because it is the only tokenizer that is not linked to any
        # model
        pass

55
56
57
58
59
60
    @unittest.skip(
        "We disable this test for PreTrainedTokenizerFast because it is the only tokenizer that is not linked to any model"
    )
    def test_encode_decode_with_spaces(self):
        pass

61
62
63
64
65
66
67
68
69
70
71
72
    @unittest.skip(
        "We disable this test for PreTrainedTokenizerFast because it is the only tokenizer that is not linked to any model"
    )
    def test_added_tokens_serialization(self):
        pass

    @unittest.skip(
        "We disable this test for PreTrainedTokenizerFast because it is the only tokenizer that is not linked to any model"
    )
    def test_additional_special_tokens_serialization(self):
        pass

73
74
75
76
77
78
79
80
    def test_prepare_for_model(self):
        # We disable this test for PreTrainedTokenizerFast because it is the only tokenizer that is not linked to any
        # model
        pass

    def test_rust_tokenizer_signature(self):
        # PreTrainedTokenizerFast doesn't have tokenizer_file in its signature
        pass
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

    def test_training_new_tokenizer(self):
        tmpdirname_orig = self.tmpdirname
        # Here we want to test the 2 available tokenizers that use 2 different types of models: Unigram and WordLevel.
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
                try:
                    self.tmpdirname = tempfile.mkdtemp()
                    tokenizer = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                    tokenizer.save_pretrained(self.tmpdirname)
                    super().test_training_new_tokenizer()
                finally:
                    # Even if the test fails, we must be sure that the folder is deleted and that the default tokenizer
                    # is restored
                    shutil.rmtree(self.tmpdirname)
                    self.tmpdirname = tmpdirname_orig

    def test_training_new_tokenizer_with_special_tokens_change(self):
        tmpdirname_orig = self.tmpdirname
        # Here we want to test the 2 available tokenizers that use 2 different types of models: Unigram and WordLevel.
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
                try:
                    self.tmpdirname = tempfile.mkdtemp()
                    tokenizer = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                    tokenizer.save_pretrained(self.tmpdirname)
                    super().test_training_new_tokenizer_with_special_tokens_change()
                finally:
                    # Even if the test fails, we must be sure that the folder is deleted and that the default tokenizer
                    # is restored
                    shutil.rmtree(self.tmpdirname)
                    self.tmpdirname = tmpdirname_orig
115

116
117
118
119
120
121
122
123
124
    def test_training_new_tokenizer_with_bytelevel(self):
        tokenizer = self.rust_tokenizer_class.from_pretrained(self.bytelevel_bpe_model_name)

        toy_text_iterator = ("a" for _ in range(1000))
        new_tokenizer = tokenizer.train_new_from_iterator(text_iterator=toy_text_iterator, length=1000, vocab_size=50)

        encoding_ids = new_tokenizer.encode("a馃")
        self.assertEqual(encoding_ids, [64, 172, 253, 97, 245])

125
126
127
128
129
    def test_init_from_tokenizers_model(self):
        from tokenizers import Tokenizer

        sentences = ["Hello, y'all!", "How are you 馃榿 ? There should not be any issue right?"]

130
        tokenizer = Tokenizer.from_pretrained("google-t5/t5-base")
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
        # Enable padding
        tokenizer.enable_padding(pad_id=0, pad_token="<pad>", length=512, pad_to_multiple_of=8)
        self.assertEqual(
            tokenizer.padding,
            {
                "length": 512,
                "pad_to_multiple_of": 8,
                "pad_id": 0,
                "pad_token": "<pad>",
                "pad_type_id": 0,
                "direction": "right",
            },
        )
        fast_tokenizer = PreTrainedTokenizerFast(tokenizer_object=tokenizer)
        tmpdirname = tempfile.mkdtemp()
        fast_tokenizer.save_pretrained(tmpdirname)
        fast_from_saved = PreTrainedTokenizerFast.from_pretrained(tmpdirname)
        for tok in [fast_tokenizer, fast_from_saved]:
            self.assertEqual(tok.pad_token_id, 0)
            self.assertEqual(tok.padding_side, "right")
            self.assertEqual(tok.pad_token, "<pad>")
            self.assertEqual(tok.init_kwargs["max_length"], 512)
            self.assertEqual(tok.init_kwargs["pad_to_multiple_of"], 8)
154
            self.assertEqual(tok(sentences, padding = True), {'input_ids': [[8774, 6, 3, 63, 31, 1748, 55, 1, 0, 0, 0, 0,0, 0, 0, 0],[ 571, 33, 25, 3, 2, 3, 58, 290, 225, 59, 36, 136, 962, 269, 58, 1]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]})  # fmt: skip
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

        tokenizer.enable_truncation(8, stride=0, strategy="longest_first", direction="right")
        self.assertEqual(
            tokenizer.truncation, {"max_length": 8, "stride": 0, "strategy": "longest_first", "direction": "right"}
        )
        fast_tokenizer = PreTrainedTokenizerFast(tokenizer_object=tokenizer)
        tmpdirname = tempfile.mkdtemp()
        fast_tokenizer.save_pretrained(tmpdirname)
        fast_from_saved = PreTrainedTokenizerFast.from_pretrained(tmpdirname)
        for tok in [fast_tokenizer, fast_from_saved]:
            self.assertEqual(tok.truncation_side, "right")
            self.assertEqual(tok.init_kwargs["truncation_strategy"], "longest_first")
            self.assertEqual(tok.init_kwargs["max_length"], 8)
            self.assertEqual(tok.init_kwargs["stride"], 0)
            # NOTE even if the model has a default max_length, it is not used...
            # thus tok(sentences, truncation = True) does nothing and does not warn either
171
            self.assertEqual(tok(sentences, truncation = True, max_length = 8), {'input_ids': [[8774, 6, 3, 63, 31, 1748, 55, 1],[ 571, 33, 25, 3, 2, 3, 58, 1]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1]]})  # fmt: skip
172

173

174
175
176
@require_tokenizers
class TokenizerVersioningTest(unittest.TestCase):
    def test_local_versioning(self):
177
        tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-cased")
178
179
180
181
        json_tokenizer = json.loads(tokenizer._tokenizer.to_str())
        json_tokenizer["model"]["vocab"]["huggingface"] = len(tokenizer)

        with tempfile.TemporaryDirectory() as tmp_dir:
182
183
            # Hack to save this in the tokenizer_config.json
            tokenizer.init_kwargs["fast_tokenizer_files"] = ["tokenizer.4.0.0.json"]
184
185
186
187
188
189
190
191
192
193
194
195
            tokenizer.save_pretrained(tmp_dir)
            json.dump(json_tokenizer, open(os.path.join(tmp_dir, "tokenizer.4.0.0.json"), "w"))

            # This should pick the new tokenizer file as the version of Transformers is > 4.0.0
            new_tokenizer = AutoTokenizer.from_pretrained(tmp_dir)
            self.assertEqual(len(new_tokenizer), len(tokenizer) + 1)
            json_tokenizer = json.loads(new_tokenizer._tokenizer.to_str())
            self.assertIn("huggingface", json_tokenizer["model"]["vocab"])

            # Will need to be adjusted if we reach v42 and this test is still here.
            # Should pick the old tokenizer file as the version of Transformers is < 4.0.0
            shutil.move(os.path.join(tmp_dir, "tokenizer.4.0.0.json"), os.path.join(tmp_dir, "tokenizer.42.0.0.json"))
196
197
            tokenizer.init_kwargs["fast_tokenizer_files"] = ["tokenizer.42.0.0.json"]
            tokenizer.save_pretrained(tmp_dir)
198
199
200
201
202
203
204
            new_tokenizer = AutoTokenizer.from_pretrained(tmp_dir)
            self.assertEqual(len(new_tokenizer), len(tokenizer))
            json_tokenizer = json.loads(new_tokenizer._tokenizer.to_str())
            self.assertNotIn("huggingface", json_tokenizer["model"]["vocab"])

    def test_repo_versioning(self):
        # This repo has two tokenizer files, one for v4.0.0 and above with an added token, one for versions lower.
205
        repo = "hf-internal-testing/test-two-tokenizers"
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

        # This should pick the new tokenizer file as the version of Transformers is > 4.0.0
        tokenizer = AutoTokenizer.from_pretrained(repo)
        self.assertEqual(len(tokenizer), 28997)
        json_tokenizer = json.loads(tokenizer._tokenizer.to_str())
        self.assertIn("huggingface", json_tokenizer["model"]["vocab"])

        # Testing an older version by monkey-patching the version in the module it's used.
        import transformers as old_transformers

        old_transformers.tokenization_utils_base.__version__ = "3.0.0"
        old_tokenizer = old_transformers.models.auto.AutoTokenizer.from_pretrained(repo)
        self.assertEqual(len(old_tokenizer), 28996)
        json_tokenizer = json.loads(old_tokenizer._tokenizer.to_str())
        self.assertNotIn("huggingface", json_tokenizer["model"]["vocab"])


223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
@require_tokenizers
class ReduceMutableBorrowTests(unittest.TestCase):
    def test_async_share_tokenizer(self):
        # See https://github.com/huggingface/transformers/pull/12550
        # and https://github.com/huggingface/tokenizers/issues/537
        tokenizer = PreTrainedTokenizerFast.from_pretrained("robot-test/dummy-tokenizer-wordlevel")
        text = "The Matrix is a 1999 science fiction action film."

        with concurrent.futures.ThreadPoolExecutor() as executor:
            futures = [executor.submit(self.fetch, tokenizer, text) for i in range(10)]
            return_value = [future.result() for future in futures]
            self.assertEqual(return_value, [[1, 10, 0, 8, 0, 18, 0, 0, 0, 2] for i in range(10)])

    def fetch(self, tokenizer, text):
        return tokenizer.encode(text, truncation="longest_first", padding="longest")