test_modeling_sam.py 27.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch SAM model. """


Yih-Dar's avatar
Yih-Dar committed
18
import gc
19
20
21
22
import unittest

import requests

23
from transformers import SamConfig, SamMaskDecoderConfig, SamPromptEncoderConfig, SamVisionConfig, pipeline
24
from transformers.testing_utils import backend_empty_cache, require_torch, slow, torch_device
25
26
27
28
from transformers.utils import is_torch_available, is_vision_available

from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor
29
from ...test_pipeline_mixin import PipelineTesterMixin
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284


if is_torch_available():
    import torch
    from torch import nn

    from transformers import SamModel, SamProcessor


if is_vision_available():
    from PIL import Image


class SamPromptEncoderTester:
    def __init__(
        self,
        hidden_size=32,
        input_image_size=24,
        patch_size=2,
        mask_input_channels=4,
        num_point_embeddings=4,
        hidden_act="gelu",
    ):
        self.hidden_size = hidden_size
        self.input_image_size = input_image_size
        self.patch_size = patch_size
        self.mask_input_channels = mask_input_channels
        self.num_point_embeddings = num_point_embeddings
        self.hidden_act = hidden_act

    def get_config(self):
        return SamPromptEncoderConfig(
            image_size=self.input_image_size,
            patch_size=self.patch_size,
            mask_input_channels=self.mask_input_channels,
            hidden_size=self.hidden_size,
            num_point_embeddings=self.num_point_embeddings,
            hidden_act=self.hidden_act,
        )

    def prepare_config_and_inputs(self):
        dummy_points = floats_tensor([self.batch_size, 3, 2])
        config = self.get_config()

        return config, dummy_points


class SamMaskDecoderTester:
    def __init__(
        self,
        hidden_size=32,
        hidden_act="relu",
        mlp_dim=64,
        num_hidden_layers=2,
        num_attention_heads=4,
        attention_downsample_rate=2,
        num_multimask_outputs=3,
        iou_head_depth=3,
        iou_head_hidden_dim=32,
        layer_norm_eps=1e-6,
    ):
        self.hidden_size = hidden_size
        self.hidden_act = hidden_act
        self.mlp_dim = mlp_dim
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.attention_downsample_rate = attention_downsample_rate
        self.num_multimask_outputs = num_multimask_outputs
        self.iou_head_depth = iou_head_depth
        self.iou_head_hidden_dim = iou_head_hidden_dim
        self.layer_norm_eps = layer_norm_eps

    def get_config(self):
        return SamMaskDecoderConfig(
            hidden_size=self.hidden_size,
            hidden_act=self.hidden_act,
            mlp_dim=self.mlp_dim,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            attention_downsample_rate=self.attention_downsample_rate,
            num_multimask_outputs=self.num_multimask_outputs,
            iou_head_depth=self.iou_head_depth,
            iou_head_hidden_dim=self.iou_head_hidden_dim,
            layer_norm_eps=self.layer_norm_eps,
        )

    def prepare_config_and_inputs(self):
        config = self.get_config()

        dummy_inputs = {
            "image_embedding": floats_tensor([self.batch_size, self.hidden_size]),
        }

        return config, dummy_inputs


class SamModelTester:
    def __init__(
        self,
        parent,
        hidden_size=36,
        intermediate_size=72,
        projection_dim=62,
        output_channels=32,
        num_hidden_layers=2,
        num_attention_heads=4,
        num_channels=3,
        image_size=24,
        patch_size=2,
        hidden_act="gelu",
        layer_norm_eps=1e-06,
        dropout=0.0,
        attention_dropout=0.0,
        initializer_range=0.02,
        initializer_factor=1.0,
        qkv_bias=True,
        mlp_ratio=4.0,
        use_abs_pos=True,
        use_rel_pos=True,
        rel_pos_zero_init=False,
        window_size=14,
        global_attn_indexes=[2, 5, 8, 11],
        num_pos_feats=16,
        mlp_dim=None,
        batch_size=2,
    ):
        self.parent = parent
        self.image_size = image_size
        self.patch_size = patch_size
        self.output_channels = output_channels
        self.num_channels = num_channels
        self.hidden_size = hidden_size
        self.projection_dim = projection_dim
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.dropout = dropout
        self.attention_dropout = attention_dropout
        self.initializer_range = initializer_range
        self.initializer_factor = initializer_factor
        self.hidden_act = hidden_act
        self.layer_norm_eps = layer_norm_eps
        self.qkv_bias = qkv_bias
        self.mlp_ratio = mlp_ratio
        self.use_abs_pos = use_abs_pos
        self.use_rel_pos = use_rel_pos
        self.rel_pos_zero_init = rel_pos_zero_init
        self.window_size = window_size
        self.global_attn_indexes = global_attn_indexes
        self.num_pos_feats = num_pos_feats
        self.mlp_dim = mlp_dim
        self.batch_size = batch_size

        # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
        num_patches = (image_size // patch_size) ** 2
        self.seq_length = num_patches + 1

        self.prompt_encoder_tester = SamPromptEncoderTester()
        self.mask_decoder_tester = SamMaskDecoderTester()

    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
        config = self.get_config()

        return config, pixel_values

    def get_config(self):
        vision_config = SamVisionConfig(
            image_size=self.image_size,
            patch_size=self.patch_size,
            num_channels=self.num_channels,
            hidden_size=self.hidden_size,
            projection_dim=self.projection_dim,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            dropout=self.dropout,
            attention_dropout=self.attention_dropout,
            initializer_range=self.initializer_range,
            initializer_factor=self.initializer_factor,
            output_channels=self.output_channels,
            qkv_bias=self.qkv_bias,
            mlp_ratio=self.mlp_ratio,
            use_abs_pos=self.use_abs_pos,
            use_rel_pos=self.use_rel_pos,
            rel_pos_zero_init=self.rel_pos_zero_init,
            window_size=self.window_size,
            global_attn_indexes=self.global_attn_indexes,
            num_pos_feats=self.num_pos_feats,
            mlp_dim=self.mlp_dim,
        )

        prompt_encoder_config = self.prompt_encoder_tester.get_config()

        mask_decoder_config = self.mask_decoder_tester.get_config()

        return SamConfig(
            vision_config=vision_config,
            prompt_encoder_config=prompt_encoder_config,
            mask_decoder_config=mask_decoder_config,
        )

    def create_and_check_model(self, config, pixel_values):
        model = SamModel(config=config)
        model.to(torch_device)
        model.eval()
        with torch.no_grad():
            result = model(pixel_values)
        self.parent.assertEqual(result.iou_scores.shape, (self.batch_size, 1, 3))
        self.parent.assertEqual(result.pred_masks.shape[:3], (self.batch_size, 1, 3))

    def create_and_check_get_image_features(self, config, pixel_values):
        model = SamModel(config=config)
        model.to(torch_device)
        model.eval()
        with torch.no_grad():
            result = model.get_image_embeddings(pixel_values)
        self.parent.assertEqual(result[0].shape, (self.output_channels, 12, 12))

    def create_and_check_get_image_hidden_states(self, config, pixel_values):
        model = SamModel(config=config)
        model.to(torch_device)
        model.eval()
        with torch.no_grad():
            result = model.vision_encoder(
                pixel_values,
                output_hidden_states=True,
                return_dict=True,
            )

        # after computing the convolutional features
        expected_hidden_states_shape = (self.batch_size, 12, 12, 36)
        self.parent.assertEqual(len(result[1]), self.num_hidden_layers + 1)
        self.parent.assertEqual(result[1][0].shape, expected_hidden_states_shape)

        with torch.no_grad():
            result = model.vision_encoder(
                pixel_values,
                output_hidden_states=True,
                return_dict=False,
            )

        # after computing the convolutional features
        expected_hidden_states_shape = (self.batch_size, 12, 12, 36)
        self.parent.assertEqual(len(result[1]), self.num_hidden_layers + 1)
        self.parent.assertEqual(result[1][0].shape, expected_hidden_states_shape)

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, pixel_values = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_torch
285
class SamModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
286
287
288
289
290
291
    """
    Here we also overwrite some of the tests of test_modeling_common.py, as SAM's vision encoder does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

    all_model_classes = (SamModel,) if is_torch_available() else ()
292
293
294
    pipeline_model_mapping = (
        {"feature-extraction": SamModel, "mask-generation": SamModel} if is_torch_available() else {}
    )
295
296
297
298
299
300
    fx_compatible = False
    test_pruning = False
    test_resize_embeddings = False
    test_head_masking = False
    test_torchscript = False

301
302
303
304
305
306
    # TODO: Fix me @Arthur: `run_batch_test` in `tests/test_pipeline_mixin.py` not working
    def is_pipeline_test_to_skip(
        self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
    ):
        return True

307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
    def setUp(self):
        self.model_tester = SamModelTester(self)
        self.vision_config_tester = ConfigTester(self, config_class=SamVisionConfig, has_text_modality=False)
        self.prompt_encoder_config_tester = ConfigTester(
            self,
            config_class=SamPromptEncoderConfig,
            has_text_modality=False,
            num_attention_heads=12,
            num_hidden_layers=2,
        )
        self.mask_decoder_config_tester = ConfigTester(
            self, config_class=SamMaskDecoderConfig, has_text_modality=False
        )

    def test_config(self):
        self.vision_config_tester.run_common_tests()
        self.prompt_encoder_config_tester.run_common_tests()
        self.mask_decoder_config_tester.run_common_tests()

    @unittest.skip(reason="SAM's vision encoder does not use inputs_embeds")
    def test_inputs_embeds(self):
        pass

    def test_model_common_attributes(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, nn.Linear))

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_get_image_features(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_get_image_features(*config_and_inputs)

    def test_image_hidden_states(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_get_image_hidden_states(*config_and_inputs)

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        expected_vision_attention_shape = (
            self.model_tester.batch_size * self.model_tester.num_attention_heads,
            196,
            196,
        )
        expected_mask_decoder_attention_shape = (self.model_tester.batch_size, 1, 144, 32)

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
            config.return_dict = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            vision_attentions = outputs.vision_attentions
            self.assertEqual(len(vision_attentions), self.model_tester.num_hidden_layers)

            mask_decoder_attentions = outputs.mask_decoder_attentions
            self.assertEqual(len(mask_decoder_attentions), self.model_tester.mask_decoder_tester.num_hidden_layers)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            vision_attentions = outputs.vision_attentions
            self.assertEqual(len(vision_attentions), self.model_tester.num_hidden_layers)

            mask_decoder_attentions = outputs.mask_decoder_attentions
            self.assertEqual(len(mask_decoder_attentions), self.model_tester.mask_decoder_tester.num_hidden_layers)

            self.assertListEqual(
                list(vision_attentions[0].shape[-4:]),
                list(expected_vision_attention_shape),
            )

            self.assertListEqual(
                list(mask_decoder_attentions[0].shape[-4:]),
                list(expected_mask_decoder_attention_shape),
            )

    @unittest.skip(reason="SamModel does not support training")
    def test_training(self):
        pass

    @unittest.skip(reason="SamModel does not support training")
    def test_training_gradient_checkpointing(self):
        pass

410
411
412
413
414
415
416
417
418
419
420
421
    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant(self):
        pass

    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant_false(self):
        pass

422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
    @unittest.skip(reason="SamModel has no base class and is not available in MODEL_MAPPING")
    def test_save_load_fast_init_from_base(self):
        pass

    @unittest.skip(reason="SamModel has no base class and is not available in MODEL_MAPPING")
    def test_save_load_fast_init_to_base(self):
        pass

    @unittest.skip(reason="SamModel does not support training")
    def test_retain_grad_hidden_states_attentions(self):
        pass

    @unittest.skip(reason="Hidden_states is tested in create_and_check_model tests")
    def test_hidden_states_output(self):
        pass

438
439
440
    def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=5e-5, name="outputs", attributes=None):
        # Use a slightly higher default tol to make the tests non-flaky
        super().check_pt_tf_outputs(tf_outputs, pt_outputs, model_class, tol=tol, name=name, attributes=attributes)
441

442
443
    @slow
    def test_model_from_pretrained(self):
444
445
446
        model_name = "facebook/sam-vit-huge"
        model = SamModel.from_pretrained(model_name)
        self.assertIsNotNone(model)
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462


def prepare_image():
    img_url = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png"
    raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB")
    return raw_image


def prepare_dog_img():
    img_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/dog-sam.png"
    raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB")
    return raw_image


@slow
class SamModelIntegrationTest(unittest.TestCase):
Yih-Dar's avatar
Yih-Dar committed
463
464
465
466
    def tearDown(self):
        super().tearDown()
        # clean-up as much as possible GPU memory occupied by PyTorch
        gc.collect()
467
        backend_empty_cache(torch_device)
Yih-Dar's avatar
Yih-Dar committed
468

469
    def test_inference_mask_generation_no_point(self):
470
471
        model = SamModel.from_pretrained("facebook/sam-vit-base")
        processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
472
473
474
475
476
477
478
479
480
481

        model.to(torch_device)
        model.eval()

        raw_image = prepare_image()
        inputs = processor(images=raw_image, return_tensors="pt").to(torch_device)

        with torch.no_grad():
            outputs = model(**inputs)
        scores = outputs.iou_scores.squeeze()
482
        masks = outputs.pred_masks[0, 0, 0, 0, :3]
483
        self.assertTrue(torch.allclose(scores[-1], torch.tensor(0.4515), atol=2e-4))
Yih-Dar's avatar
Yih-Dar committed
484
        self.assertTrue(torch.allclose(masks, torch.tensor([-4.1800, -3.4948, -3.4481]).to(torch_device), atol=2e-4))
485
486

    def test_inference_mask_generation_one_point_one_bb(self):
487
488
        model = SamModel.from_pretrained("facebook/sam-vit-base")
        processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
489
490
491
492
493

        model.to(torch_device)
        model.eval()

        raw_image = prepare_image()
494
        input_boxes = [[[650, 900, 1000, 1250]]]
495
496
497
498
499
500
501
502
503
        input_points = [[[820, 1080]]]

        inputs = processor(
            images=raw_image, input_boxes=input_boxes, input_points=input_points, return_tensors="pt"
        ).to(torch_device)

        with torch.no_grad():
            outputs = model(**inputs)
        scores = outputs.iou_scores.squeeze()
504
        masks = outputs.pred_masks[0, 0, 0, 0, :3]
505
        self.assertTrue(torch.allclose(scores[-1], torch.tensor(0.9566), atol=2e-4))
506
        self.assertTrue(
Yih-Dar's avatar
Yih-Dar committed
507
            torch.allclose(masks, torch.tensor([-12.7729, -12.3665, -12.6061]).to(torch_device), atol=2e-4)
508
        )
509
510

    def test_inference_mask_generation_batched_points_batched_images(self):
511
512
        model = SamModel.from_pretrained("facebook/sam-vit-base")
        processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529

        model.to(torch_device)
        model.eval()

        raw_image = prepare_image()
        input_points = [
            [[[820, 1080]], [[820, 1080]], [[820, 1080]], [[820, 1080]]],
            [[[510, 1080]], [[820, 1080]], [[820, 1080]], [[820, 1080]]],
        ]

        inputs = processor(images=[raw_image, raw_image], input_points=input_points, return_tensors="pt").to(
            torch_device
        )

        with torch.no_grad():
            outputs = model(**inputs)
        scores = outputs.iou_scores.squeeze().cpu()
530
        masks = outputs.pred_masks[0, 0, 0, 0, :3].cpu()
531
532
533
534

        EXPECTED_SCORES = torch.tensor(
            [
                [
535
536
537
538
                    [0.6765, 0.9379, 0.8803],
                    [0.6765, 0.9379, 0.8803],
                    [0.6765, 0.9379, 0.8803],
                    [0.6765, 0.9379, 0.8803],
539
540
                ],
                [
541
542
543
544
                    [0.3317, 0.7264, 0.7646],
                    [0.6765, 0.9379, 0.8803],
                    [0.6765, 0.9379, 0.8803],
                    [0.6765, 0.9379, 0.8803],
545
546
547
                ],
            ]
        )
Yih-Dar's avatar
Yih-Dar committed
548
        EXPECTED_MASKS = torch.tensor([-2.8550, -2.7988, -2.9625])
549
        self.assertTrue(torch.allclose(scores, EXPECTED_SCORES, atol=1e-3))
550
        self.assertTrue(torch.allclose(masks, EXPECTED_MASKS, atol=1e-3))
551
552

    def test_inference_mask_generation_one_point_one_bb_zero(self):
553
554
        model = SamModel.from_pretrained("facebook/sam-vit-base")
        processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
555
556
557
558
559

        model.to(torch_device)
        model.eval()

        raw_image = prepare_image()
560
        input_boxes = [[[620, 900, 1000, 1255]]]
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
        input_points = [[[820, 1080]]]
        labels = [[0]]

        inputs = processor(
            images=raw_image,
            input_boxes=input_boxes,
            input_points=input_points,
            input_labels=labels,
            return_tensors="pt",
        ).to(torch_device)

        with torch.no_grad():
            outputs = model(**inputs)
        scores = outputs.iou_scores.squeeze()

Yih-Dar's avatar
Yih-Dar committed
576
        self.assertTrue(torch.allclose(scores[-1], torch.tensor(0.7894), atol=1e-4))
577
578

    def test_inference_mask_generation_one_point(self):
579
580
        model = SamModel.from_pretrained("facebook/sam-vit-base")
        processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596

        model.to(torch_device)
        model.eval()

        raw_image = prepare_image()

        input_points = [[[400, 650]]]
        input_labels = [[1]]

        inputs = processor(
            images=raw_image, input_points=input_points, input_labels=input_labels, return_tensors="pt"
        ).to(torch_device)

        with torch.no_grad():
            outputs = model(**inputs)
        scores = outputs.iou_scores.squeeze()
597
        self.assertTrue(torch.allclose(scores[-1], torch.tensor(0.9675), atol=1e-4))
598
599
600
601
602
603
604
605
606

        # With no label
        input_points = [[[400, 650]]]

        inputs = processor(images=raw_image, input_points=input_points, return_tensors="pt").to(torch_device)

        with torch.no_grad():
            outputs = model(**inputs)
        scores = outputs.iou_scores.squeeze()
607
        self.assertTrue(torch.allclose(scores[-1], torch.tensor(0.9675), atol=1e-4))
608
609

    def test_inference_mask_generation_two_points(self):
610
611
        model = SamModel.from_pretrained("facebook/sam-vit-base")
        processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627

        model.to(torch_device)
        model.eval()

        raw_image = prepare_image()

        input_points = [[[400, 650], [800, 650]]]
        input_labels = [[1, 1]]

        inputs = processor(
            images=raw_image, input_points=input_points, input_labels=input_labels, return_tensors="pt"
        ).to(torch_device)

        with torch.no_grad():
            outputs = model(**inputs)
        scores = outputs.iou_scores.squeeze()
628
        self.assertTrue(torch.allclose(scores[-1], torch.tensor(0.9762), atol=1e-4))
629
630
631
632
633
634
635
636

        # no labels
        inputs = processor(images=raw_image, input_points=input_points, return_tensors="pt").to(torch_device)

        with torch.no_grad():
            outputs = model(**inputs)
        scores = outputs.iou_scores.squeeze()

637
        self.assertTrue(torch.allclose(scores[-1], torch.tensor(0.9762), atol=1e-4))
638
639

    def test_inference_mask_generation_two_points_batched(self):
640
641
        model = SamModel.from_pretrained("facebook/sam-vit-base")
        processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

        model.to(torch_device)
        model.eval()

        raw_image = prepare_image()

        input_points = [[[400, 650], [800, 650]], [[400, 650]]]
        input_labels = [[1, 1], [1]]

        inputs = processor(
            images=[raw_image, raw_image], input_points=input_points, input_labels=input_labels, return_tensors="pt"
        ).to(torch_device)

        with torch.no_grad():
            outputs = model(**inputs)
        scores = outputs.iou_scores.squeeze()
658
659
        self.assertTrue(torch.allclose(scores[0][-1], torch.tensor(0.9762), atol=1e-4))
        self.assertTrue(torch.allclose(scores[1][-1], torch.tensor(0.9637), atol=1e-4))
660
661

    def test_inference_mask_generation_one_box(self):
662
663
        model = SamModel.from_pretrained("facebook/sam-vit-base")
        processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
664
665
666
667
668
669
670
671
672
673
674
675
676

        model.to(torch_device)
        model.eval()

        raw_image = prepare_image()

        input_boxes = [[[75, 275, 1725, 850]]]

        inputs = processor(images=raw_image, input_boxes=input_boxes, return_tensors="pt").to(torch_device)

        with torch.no_grad():
            outputs = model(**inputs)
        scores = outputs.iou_scores.squeeze()
677
        self.assertTrue(torch.allclose(scores[-1], torch.tensor(0.7937), atol=1e-4))
678
679

    def test_inference_mask_generation_batched_image_one_point(self):
680
681
        model = SamModel.from_pretrained("facebook/sam-vit-base")
        processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708

        model.to(torch_device)
        model.eval()

        raw_image = prepare_image()
        raw_dog_image = prepare_dog_img()

        input_points = [[[820, 1080]], [[220, 470]]]

        inputs = processor(images=[raw_image, raw_dog_image], input_points=input_points, return_tensors="pt").to(
            torch_device
        )

        with torch.no_grad():
            outputs = model(**inputs)
        scores_batched = outputs.iou_scores.squeeze()

        input_points = [[[220, 470]]]

        inputs = processor(images=raw_dog_image, input_points=input_points, return_tensors="pt").to(torch_device)

        with torch.no_grad():
            outputs = model(**inputs)
        scores_single = outputs.iou_scores.squeeze()
        self.assertTrue(torch.allclose(scores_batched[1, :], scores_single, atol=1e-4))

    def test_inference_mask_generation_two_points_point_batch(self):
709
710
        model = SamModel.from_pretrained("facebook/sam-vit-base")
        processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
711
712
713
714
715
716

        model.to(torch_device)
        model.eval()

        raw_image = prepare_image()

717
        input_points = torch.Tensor([[[400, 650]], [[220, 470]]]).cpu()  # fmt: skip
718
719
720
721
722
723
724
725
726
727
728

        input_points = input_points.unsqueeze(0)

        inputs = processor(raw_image, input_points=input_points, return_tensors="pt").to(torch_device)

        with torch.no_grad():
            outputs = model(**inputs)

        iou_scores = outputs.iou_scores.cpu()
        self.assertTrue(iou_scores.shape == (1, 2, 3))
        torch.testing.assert_allclose(
729
            iou_scores, torch.tensor([[[0.9105, 0.9825, 0.9675], [0.7646, 0.7943, 0.7774]]]), atol=1e-4, rtol=1e-4
730
731
732
        )

    def test_inference_mask_generation_three_boxes_point_batch(self):
733
734
        model = SamModel.from_pretrained("facebook/sam-vit-base")
        processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
735
736
737
738
739
740
741
742

        model.to(torch_device)
        model.eval()

        raw_image = prepare_image()

        # fmt: off
        input_boxes = torch.Tensor([[[620, 900, 1000, 1255]], [[75, 275, 1725, 850]],  [[75, 275, 1725, 850]]]).cpu()
743
744
745
        EXPECTED_IOU = torch.tensor([[[0.9773, 0.9881, 0.9522],
         [0.5996, 0.7661, 0.7937],
         [0.5996, 0.7661, 0.7937]]])
746
747
748
749
750
751
752
753
754
755
756
        # fmt: on
        input_boxes = input_boxes.unsqueeze(0)

        inputs = processor(raw_image, input_boxes=input_boxes, return_tensors="pt").to(torch_device)

        with torch.no_grad():
            outputs = model(**inputs)

        iou_scores = outputs.iou_scores.cpu()
        self.assertTrue(iou_scores.shape == (1, 3, 3))
        torch.testing.assert_allclose(iou_scores, EXPECTED_IOU, atol=1e-4, rtol=1e-4)
757
758

    def test_dummy_pipeline_generation(self):
759
        generator = pipeline("mask-generation", model="facebook/sam-vit-base", device=torch_device)
760
761
762
        raw_image = prepare_image()

        _ = generator(raw_image, points_per_batch=64)