test_modeling_resnet.py 11.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch ResNet model. """


import unittest

from transformers import ResNetConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
22
from transformers.utils import cached_property, is_torch_available, is_vision_available
23

24
from ...test_backbone_common import BackboneTesterMixin
Yih-Dar's avatar
Yih-Dar committed
25
26
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
27
from ...test_pipeline_mixin import PipelineTesterMixin
28
29
30
31
32
33


if is_torch_available():
    import torch
    from torch import nn

34
    from transformers import ResNetBackbone, ResNetForImageClassification, ResNetModel
35
36
37
38
39


if is_vision_available():
    from PIL import Image

40
    from transformers import AutoImageProcessor
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57


class ResNetModelTester:
    def __init__(
        self,
        parent,
        batch_size=3,
        image_size=32,
        num_channels=3,
        embeddings_size=10,
        hidden_sizes=[10, 20, 30, 40],
        depths=[1, 1, 2, 1],
        is_training=True,
        use_labels=True,
        hidden_act="relu",
        num_labels=3,
        scope=None,
NielsRogge's avatar
NielsRogge committed
58
        out_features=["stage2", "stage3", "stage4"],
59
        out_indices=[2, 3, 4],
60
61
62
63
64
65
66
67
68
69
70
71
72
73
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.image_size = image_size
        self.num_channels = num_channels
        self.embeddings_size = embeddings_size
        self.hidden_sizes = hidden_sizes
        self.depths = depths
        self.is_training = is_training
        self.use_labels = use_labels
        self.hidden_act = hidden_act
        self.num_labels = num_labels
        self.scope = scope
        self.num_stages = len(hidden_sizes)
74
        self.out_features = out_features
75
        self.out_indices = out_indices
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])

        labels = None
        if self.use_labels:
            labels = ids_tensor([self.batch_size], self.num_labels)

        config = self.get_config()

        return config, pixel_values, labels

    def get_config(self):
        return ResNetConfig(
            num_channels=self.num_channels,
            embeddings_size=self.embeddings_size,
            hidden_sizes=self.hidden_sizes,
            depths=self.depths,
            hidden_act=self.hidden_act,
            num_labels=self.num_labels,
96
            out_features=self.out_features,
97
            out_indices=self.out_indices,
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
        )

    def create_and_check_model(self, config, pixel_values, labels):
        model = ResNetModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
        # expected last hidden states: B, C, H // 32, W // 32
        self.parent.assertEqual(
            result.last_hidden_state.shape,
            (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32),
        )

    def create_and_check_for_image_classification(self, config, pixel_values, labels):
        config.num_labels = self.num_labels
        model = ResNetForImageClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values, labels=labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))

119
120
121
122
123
124
    def create_and_check_backbone(self, config, pixel_values, labels):
        model = ResNetBackbone(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)

125
        # verify feature maps
126
        self.parent.assertEqual(len(result.feature_maps), len(config.out_features))
NielsRogge's avatar
NielsRogge committed
127
        self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, self.hidden_sizes[1], 4, 4])
128
129

        # verify channels
NielsRogge's avatar
NielsRogge committed
130
131
        self.parent.assertEqual(len(model.channels), len(config.out_features))
        self.parent.assertListEqual(model.channels, config.hidden_sizes[1:])
132

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
        # verify backbone works with out_features=None
        config.out_features = None
        model = ResNetBackbone(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)

        # verify feature maps
        self.parent.assertEqual(len(result.feature_maps), 1)
        self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, self.hidden_sizes[-1], 1, 1])

        # verify channels
        self.parent.assertEqual(len(model.channels), 1)
        self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]])

148
149
150
151
152
153
154
155
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, pixel_values, labels = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_torch
156
class ResNetModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
157
158
159
160
161
    """
    Here we also overwrite some of the tests of test_modeling_common.py, as ResNet does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

162
163
164
165
166
167
168
169
170
    all_model_classes = (
        (
            ResNetModel,
            ResNetForImageClassification,
            ResNetBackbone,
        )
        if is_torch_available()
        else ()
    )
171
    pipeline_model_mapping = (
172
        {"image-feature-extraction": ResNetModel, "image-classification": ResNetForImageClassification}
173
174
175
        if is_torch_available()
        else {}
    )
176

177
    fx_compatible = True
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
    test_pruning = False
    test_resize_embeddings = False
    test_head_masking = False
    has_attentions = False

    def setUp(self):
        self.model_tester = ResNetModelTester(self)
        self.config_tester = ConfigTester(self, config_class=ResNetConfig, has_text_modality=False)

    def test_config(self):
        self.create_and_test_config_common_properties()
        self.config_tester.create_and_test_config_to_json_string()
        self.config_tester.create_and_test_config_to_json_file()
        self.config_tester.create_and_test_config_from_and_save_pretrained()
        self.config_tester.create_and_test_config_with_num_labels()
        self.config_tester.check_config_can_be_init_without_params()
        self.config_tester.check_config_arguments_init()

    def create_and_test_config_common_properties(self):
        return

    @unittest.skip(reason="ResNet does not use inputs_embeds")
    def test_inputs_embeds(self):
        pass

    @unittest.skip(reason="ResNet does not support input and output embeddings")
    def test_model_common_attributes(self):
        pass

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

211
212
213
214
    def test_backbone(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_backbone(*config_and_inputs)

215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
    def test_initialization(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config=config)
            for name, module in model.named_modules():
                if isinstance(module, (nn.BatchNorm2d, nn.GroupNorm)):
                    self.assertTrue(
                        torch.all(module.weight == 1),
                        msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                    )
                    self.assertTrue(
                        torch.all(module.bias == 0),
                        msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                    )

    def test_hidden_states_output(self):
        def check_hidden_states_output(inputs_dict, config, model_class):
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states

            expected_num_stages = self.model_tester.num_stages
            self.assertEqual(len(hidden_states), expected_num_stages + 1)

            # ResNet's feature maps are of shape (batch_size, num_channels, height, width)
            self.assertListEqual(
                list(hidden_states[0].shape[-2:]),
                [self.model_tester.image_size // 4, self.model_tester.image_size // 4],
            )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        layers_type = ["basic", "bottleneck"]
        for model_class in self.all_model_classes:
            for layer_type in layers_type:
                config.layer_type = layer_type
                inputs_dict["output_hidden_states"] = True
                check_hidden_states_output(inputs_dict, config, model_class)

                # check that output_hidden_states also work using config
                del inputs_dict["output_hidden_states"]
                config.output_hidden_states = True

                check_hidden_states_output(inputs_dict, config, model_class)

265
266
267
268
    @unittest.skip(reason="ResNet does not use feedforward chunking")
    def test_feed_forward_chunking(self):
        pass

269
270
271
272
273
274
    def test_for_image_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_image_classification(*config_and_inputs)

    @slow
    def test_model_from_pretrained(self):
275
276
277
        model_name = "microsoft/resnet-50"
        model = ResNetModel.from_pretrained(model_name)
        self.assertIsNotNone(model)
278
279
280
281
282
283
284
285
286
287
288
289


# We will verify our results on an image of cute cats
def prepare_img():
    image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
    return image


@require_torch
@require_vision
class ResNetModelIntegrationTest(unittest.TestCase):
    @cached_property
290
    def default_image_processor(self):
291
        return AutoImageProcessor.from_pretrained("microsoft/resnet-50") if is_vision_available() else None
292
293
294

    @slow
    def test_inference_image_classification_head(self):
295
        model = ResNetForImageClassification.from_pretrained("microsoft/resnet-50").to(torch_device)
296

297
        image_processor = self.default_image_processor
298
        image = prepare_img()
299
        inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
300
301
302
303
304
305
306
307
308
309
310
311

        # forward pass
        with torch.no_grad():
            outputs = model(**inputs)

        # verify the logits
        expected_shape = torch.Size((1, 1000))
        self.assertEqual(outputs.logits.shape, expected_shape)

        expected_slice = torch.tensor([-11.1069, -9.7877, -8.3777]).to(torch_device)

        self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))
312
313
314
315
316
317
318
319
320
321


@require_torch
class ResNetBackboneTest(BackboneTesterMixin, unittest.TestCase):
    all_model_classes = (ResNetBackbone,) if is_torch_available() else ()
    has_attentions = False
    config_class = ResNetConfig

    def setUp(self):
        self.model_tester = ResNetModelTester(self)