test_modeling_beit.py 21 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch BEiT model. """


import unittest

20
from datasets import load_dataset
21
from packaging import version
22

NielsRogge's avatar
NielsRogge committed
23
from transformers import BeitConfig
24
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
25
from transformers.utils import cached_property, is_torch_available, is_vision_available
NielsRogge's avatar
NielsRogge committed
26

NielsRogge's avatar
NielsRogge committed
27
from ...test_backbone_common import BackboneTesterMixin
Yih-Dar's avatar
Yih-Dar committed
28
29
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
30
from ...test_pipeline_mixin import PipelineTesterMixin
NielsRogge's avatar
NielsRogge committed
31
32
33
34
35
36


if is_torch_available():
    import torch
    from torch import nn

37
    from transformers import (
NielsRogge's avatar
NielsRogge committed
38
        BeitBackbone,
39
40
41
42
43
        BeitForImageClassification,
        BeitForMaskedImageModeling,
        BeitForSemanticSegmentation,
        BeitModel,
    )
44
    from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
NielsRogge's avatar
NielsRogge committed
45
46
47


if is_vision_available():
48
    import PIL
NielsRogge's avatar
NielsRogge committed
49
50
    from PIL import Image

51
    from transformers import BeitImageProcessor
NielsRogge's avatar
NielsRogge committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65


class BeitModelTester:
    def __init__(
        self,
        parent,
        vocab_size=100,
        batch_size=13,
        image_size=30,
        patch_size=2,
        num_channels=3,
        is_training=True,
        use_labels=True,
        hidden_size=32,
NielsRogge's avatar
NielsRogge committed
66
        num_hidden_layers=4,
NielsRogge's avatar
NielsRogge committed
67
68
69
70
71
72
73
74
75
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        type_sequence_label_size=10,
        initializer_range=0.02,
        num_labels=3,
        scope=None,
NielsRogge's avatar
NielsRogge committed
76
77
        out_indices=[1, 2, 3, 4],
        out_features=["stage1", "stage2", "stage3", "stage4"],
NielsRogge's avatar
NielsRogge committed
78
79
    ):
        self.parent = parent
NielsRogge's avatar
NielsRogge committed
80
        self.vocab_size = vocab_size
NielsRogge's avatar
NielsRogge committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
        self.batch_size = batch_size
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.is_training = is_training
        self.use_labels = use_labels
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.scope = scope
97
        self.out_indices = out_indices
NielsRogge's avatar
NielsRogge committed
98
        self.out_features = out_features
99
        self.num_labels = num_labels
NielsRogge's avatar
NielsRogge committed
100

NielsRogge's avatar
NielsRogge committed
101
        # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
102
        num_patches = (image_size // patch_size) ** 2
NielsRogge's avatar
NielsRogge committed
103
        self.seq_length = num_patches + 1
104

NielsRogge's avatar
NielsRogge committed
105
106
107
108
    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])

        labels = None
109
        pixel_labels = None
NielsRogge's avatar
NielsRogge committed
110
111
        if self.use_labels:
            labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
112
            pixel_labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels)
NielsRogge's avatar
NielsRogge committed
113
114
115

        config = self.get_config()

116
        return config, pixel_values, labels, pixel_labels
NielsRogge's avatar
NielsRogge committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

    def get_config(self):
        return BeitConfig(
            vocab_size=self.vocab_size,
            image_size=self.image_size,
            patch_size=self.patch_size,
            num_channels=self.num_channels,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            is_decoder=False,
            initializer_range=self.initializer_range,
133
            out_indices=self.out_indices,
NielsRogge's avatar
NielsRogge committed
134
            out_features=self.out_features,
NielsRogge's avatar
NielsRogge committed
135
136
        )

137
    def create_and_check_model(self, config, pixel_values, labels, pixel_labels):
NielsRogge's avatar
NielsRogge committed
138
139
140
141
        model = BeitModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
NielsRogge's avatar
NielsRogge committed
142
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
NielsRogge's avatar
NielsRogge committed
143

NielsRogge's avatar
NielsRogge committed
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
    def create_and_check_backbone(self, config, pixel_values, labels, pixel_labels):
        model = BeitBackbone(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)

        # verify hidden states
        self.parent.assertEqual(len(result.feature_maps), len(config.out_features))
        expected_height = expected_width = self.image_size // config.patch_size
        self.parent.assertListEqual(
            list(result.feature_maps[0].shape), [self.batch_size, self.hidden_size, expected_height, expected_width]
        )

        # verify channels
        self.parent.assertEqual(len(model.channels), len(config.out_features))

        # verify backbone works with out_features=None
        config.out_features = None
        model = BeitBackbone(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)

        # verify feature maps
        self.parent.assertEqual(len(result.feature_maps), 1)
        self.parent.assertListEqual(
            list(result.feature_maps[0].shape), [self.batch_size, self.hidden_size, expected_height, expected_width]
        )

        # verify channels
        self.parent.assertEqual(len(model.channels), 1)

176
    def create_and_check_for_masked_lm(self, config, pixel_values, labels, pixel_labels):
NielsRogge's avatar
NielsRogge committed
177
178
179
180
        model = BeitForMaskedImageModeling(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
NielsRogge's avatar
NielsRogge committed
181
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size))
NielsRogge's avatar
NielsRogge committed
182

183
    def create_and_check_for_image_classification(self, config, pixel_values, labels, pixel_labels):
NielsRogge's avatar
NielsRogge committed
184
185
186
187
188
189
190
        config.num_labels = self.type_sequence_label_size
        model = BeitForImageClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values, labels=labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))

NielsRogge's avatar
NielsRogge committed
191
192
193
194
195
196
197
198
199
200
        # test greyscale images
        config.num_channels = 1
        model = BeitForImageClassification(config)
        model.to(torch_device)
        model.eval()

        pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
        result = model(pixel_values, labels=labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))

NielsRogge's avatar
NielsRogge committed
201
    def create_and_check_for_semantic_segmentation(self, config, pixel_values, labels, pixel_labels):
202
203
204
205
206
207
        config.num_labels = self.num_labels
        model = BeitForSemanticSegmentation(config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
        self.parent.assertEqual(
208
            result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2)
209
210
211
        )
        result = model(pixel_values, labels=pixel_labels)
        self.parent.assertEqual(
212
            result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2)
213
214
        )

NielsRogge's avatar
NielsRogge committed
215
216
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
217
        config, pixel_values, labels, pixel_labels = config_and_inputs
NielsRogge's avatar
NielsRogge committed
218
219
220
221
222
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_torch
223
class BeitModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
NielsRogge's avatar
NielsRogge committed
224
225
226
227
228
229
    """
    Here we also overwrite some of the tests of test_modeling_common.py, as BEiT does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

    all_model_classes = (
NielsRogge's avatar
NielsRogge committed
230
231
232
233
234
235
236
        (
            BeitModel,
            BeitForImageClassification,
            BeitForMaskedImageModeling,
            BeitForSemanticSegmentation,
            BeitBackbone,
        )
237
238
        if is_torch_available()
        else ()
NielsRogge's avatar
NielsRogge committed
239
    )
240
241
    pipeline_model_mapping = (
        {
242
            "image-feature-extraction": BeitModel,
243
244
245
246
247
248
            "image-classification": BeitForImageClassification,
            "image-segmentation": BeitForSemanticSegmentation,
        }
        if is_torch_available()
        else {}
    )
NielsRogge's avatar
NielsRogge committed
249
250
251
252
253
254
255
256
257
258
259
260

    test_pruning = False
    test_resize_embeddings = False
    test_head_masking = False

    def setUp(self):
        self.model_tester = BeitModelTester(self)
        self.config_tester = ConfigTester(self, config_class=BeitConfig, has_text_modality=False, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

NielsRogge's avatar
NielsRogge committed
261
    @unittest.skip(reason="BEiT does not use inputs_embeds")
NielsRogge's avatar
NielsRogge committed
262
263
264
    def test_inputs_embeds(self):
        pass

265
266
267
268
269
    @require_torch_multi_gpu
    @unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`")
    def test_multi_gpu_data_parallel_forward(self):
        pass

NielsRogge's avatar
NielsRogge committed
270
271
272
273
    @unittest.skip(reason="BEiT does not support feedforward chunking yet")
    def test_feed_forward_chunking(self):
        pass

NielsRogge's avatar
NielsRogge committed
274
275
276
277
278
279
280
281
282
283
284
285
286
    def test_model_common_attributes(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, nn.Linear))

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

NielsRogge's avatar
NielsRogge committed
287
288
289
290
    def test_backbone(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_backbone(*config_and_inputs)

NielsRogge's avatar
NielsRogge committed
291
292
293
294
295
296
297
298
299
    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)

    def test_for_image_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_image_classification(*config_and_inputs)

    def test_for_semantic_segmentation(self):
300
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
NielsRogge's avatar
NielsRogge committed
301
        self.model_tester.create_and_check_for_semantic_segmentation(*config_and_inputs)
302

NielsRogge's avatar
NielsRogge committed
303
304
305
306
307
308
309
310
311
    def test_training(self):
        if not self.model_tester.is_training:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        for model_class in self.all_model_classes:
            # we don't test BeitForMaskedImageModeling
312
313
314
315
            if model_class.__name__ in [
                *MODEL_MAPPING_NAMES.values(),
                *MODEL_FOR_BACKBONE_MAPPING_NAMES.values(),
                "BeitForMaskedImageModeling",
NielsRogge's avatar
NielsRogge committed
316
            ]:
317
                continue
318

319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    def test_training_gradient_checkpointing(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.model_tester.is_training:
            return

        config.use_cache = False
        config.return_dict = True

        for model_class in self.all_model_classes:
            # we don't test BeitForMaskedImageModeling
336
            if (
337
338
339
340
341
342
                model_class.__name__
                in [
                    *MODEL_MAPPING_NAMES.values(),
                    *MODEL_FOR_BACKBONE_MAPPING_NAMES.values(),
                    "BeitForMaskedImageModeling",
                ]
343
344
                or not model_class.supports_gradient_checkpointing
            ):
NielsRogge's avatar
NielsRogge committed
345
                continue
NielsRogge's avatar
NielsRogge committed
346

NielsRogge's avatar
NielsRogge committed
347
            model = model_class(config)
348
            model.gradient_checkpointing_enable()
NielsRogge's avatar
NielsRogge committed
349
350
351
352
353
354
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

355
356
357
358
359
360
361
362
363
364
365
366
    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant(self):
        pass

    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant_false(self):
        pass

NielsRogge's avatar
NielsRogge committed
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
    def test_initialization(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                # we skip lambda parameters as these require special initial values
                # determined by config.layer_scale_init_value
                if "lambda" in name:
                    continue
                if param.requires_grad:
                    self.assertIn(
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
                        [0.0, 1.0],
                        msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                    )

    @slow
    def test_model_from_pretrained(self):
387
388
389
        model_name = "microsoft/beit-base-patch16-224"
        model = BeitModel.from_pretrained(model_name)
        self.assertIsNotNone(model)
NielsRogge's avatar
NielsRogge committed
390
391
392
393
394
395
396
397


# We will verify our results on an image of cute cats
def prepare_img():
    image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
    return image


398
@require_torch
NielsRogge's avatar
NielsRogge committed
399
400
401
@require_vision
class BeitModelIntegrationTest(unittest.TestCase):
    @cached_property
402
403
    def default_image_processor(self):
        return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224") if is_vision_available() else None
NielsRogge's avatar
NielsRogge committed
404

405
406
407
408
    @slow
    def test_inference_masked_image_modeling_head(self):
        model = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k").to(torch_device)

409
        image_processor = self.default_image_processor
410
        image = prepare_img()
411
        pixel_values = image_processor(images=image, return_tensors="pt").pixel_values.to(torch_device)
412
413
414
415
416

        # prepare bool_masked_pos
        bool_masked_pos = torch.ones((1, 196), dtype=torch.bool).to(torch_device)

        # forward pass
417
418
        with torch.no_grad():
            outputs = model(pixel_values=pixel_values, bool_masked_pos=bool_masked_pos)
419
420
421
422
423
424
425
426
427
428
429
430
        logits = outputs.logits

        # verify the logits
        expected_shape = torch.Size((1, 196, 8192))
        self.assertEqual(logits.shape, expected_shape)

        expected_slice = torch.tensor(
            [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]]
        ).to(torch_device)

        self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3], expected_slice, atol=1e-2))

NielsRogge's avatar
NielsRogge committed
431
432
433
434
    @slow
    def test_inference_image_classification_head_imagenet_1k(self):
        model = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224").to(torch_device)

435
        image_processor = self.default_image_processor
NielsRogge's avatar
NielsRogge committed
436
        image = prepare_img()
437
        inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
NielsRogge's avatar
NielsRogge committed
438
439

        # forward pass
440
441
        with torch.no_grad():
            outputs = model(**inputs)
NielsRogge's avatar
NielsRogge committed
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
        logits = outputs.logits

        # verify the logits
        expected_shape = torch.Size((1, 1000))
        self.assertEqual(logits.shape, expected_shape)

        expected_slice = torch.tensor([-1.2385, -1.0987, -1.0108]).to(torch_device)

        self.assertTrue(torch.allclose(logits[0, :3], expected_slice, atol=1e-4))

        expected_class_idx = 281
        self.assertEqual(logits.argmax(-1).item(), expected_class_idx)

    @slow
    def test_inference_image_classification_head_imagenet_22k(self):
        model = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k").to(
            torch_device
        )

461
        image_processor = self.default_image_processor
NielsRogge's avatar
NielsRogge committed
462
        image = prepare_img()
463
        inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
NielsRogge's avatar
NielsRogge committed
464
465

        # forward pass
466
467
        with torch.no_grad():
            outputs = model(**inputs)
NielsRogge's avatar
NielsRogge committed
468
469
470
471
472
473
474
475
476
477
478
479
        logits = outputs.logits

        # verify the logits
        expected_shape = torch.Size((1, 21841))
        self.assertEqual(logits.shape, expected_shape)

        expected_slice = torch.tensor([1.6881, -0.2787, 0.5901]).to(torch_device)

        self.assertTrue(torch.allclose(logits[0, :3], expected_slice, atol=1e-4))

        expected_class_idx = 2396
        self.assertEqual(logits.argmax(-1).item(), expected_class_idx)
480
481
482
483
484
485

    @slow
    def test_inference_semantic_segmentation(self):
        model = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640")
        model = model.to(torch_device)

486
        image_processor = BeitImageProcessor(do_resize=True, size=640, do_center_crop=False)
487
488
489

        ds = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")
        image = Image.open(ds[0]["file"])
490
        inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
491
492

        # forward pass
493
494
        with torch.no_grad():
            outputs = model(**inputs)
495
496
497
        logits = outputs.logits

        # verify the logits
498
        expected_shape = torch.Size((1, 150, 160, 160))
499
500
        self.assertEqual(logits.shape, expected_shape)

501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
        is_pillow_less_than_9 = version.parse(PIL.__version__) < version.parse("9.0.0")

        if is_pillow_less_than_9:
            expected_slice = torch.tensor(
                [
                    [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]],
                    [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]],
                    [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]],
                ],
                device=torch_device,
            )
        else:
            expected_slice = torch.tensor(
                [
                    [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]],
                    [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]],
                    [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]],
                ],
                device=torch_device,
            )
521
522

        self.assertTrue(torch.allclose(logits[0, :3, :3, :3], expected_slice, atol=1e-4))
523
524
525
526
527
528

    @slow
    def test_post_processing_semantic_segmentation(self):
        model = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640")
        model = model.to(torch_device)

529
        image_processor = BeitImageProcessor(do_resize=True, size=640, do_center_crop=False)
530
531
532

        ds = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")
        image = Image.open(ds[0]["file"])
533
        inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
534
535
536
537
538
539
540

        # forward pass
        with torch.no_grad():
            outputs = model(**inputs)

        outputs.logits = outputs.logits.detach().cpu()

541
        segmentation = image_processor.post_process_semantic_segmentation(outputs=outputs, target_sizes=[(500, 300)])
542
543
544
        expected_shape = torch.Size((500, 300))
        self.assertEqual(segmentation[0].shape, expected_shape)

545
        segmentation = image_processor.post_process_semantic_segmentation(outputs=outputs)
546
547
        expected_shape = torch.Size((160, 160))
        self.assertEqual(segmentation[0].shape, expected_shape)
NielsRogge's avatar
NielsRogge committed
548
549
550
551
552
553
554
555
556


@require_torch
class BeitBackboneTest(unittest.TestCase, BackboneTesterMixin):
    all_model_classes = (BeitBackbone,) if is_torch_available() else ()
    config_class = BeitConfig

    def setUp(self):
        self.model_tester = BeitModelTester(self)