"vscode:/vscode.git/clone" did not exist on "b296c4f6300fa924320d7d5695f810b446d845f0"
test_modeling_tf_mbart.py 14 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15

16
17
18
19
20
import tempfile
import unittest

from transformers import AutoTokenizer, MBartConfig, is_tf_available
from transformers.file_utils import cached_property
21
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
22

23
24
from .test_configuration_common import ConfigTester
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
25
26


27
if is_tf_available():
28
29
    import tensorflow as tf

30
    from transformers import TFAutoModelForSeq2SeqLM, TFMBartForConditionalGeneration, TFMBartModel
31
32


33
34
@require_tf
class TFMBartModelTester:
35
    config_cls = MBartConfig
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
    config_updates = {}
    hidden_act = "gelu"

    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_labels=False,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=20,
        eos_token_id=2,
        pad_token_id=1,
        bos_token_id=0,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.eos_token_id = eos_token_id
        self.pad_token_id = pad_token_id
        self.bos_token_id = bos_token_id

    def prepare_config_and_inputs_for_common(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size)
        eos_tensor = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size), 1)
        input_ids = tf.concat([input_ids, eos_tensor], axis=1)

        decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        config = self.config_cls(
            vocab_size=self.vocab_size,
            d_model=self.hidden_size,
            encoder_layers=self.num_hidden_layers,
            decoder_layers=self.num_hidden_layers,
            encoder_attention_heads=self.num_attention_heads,
            decoder_attention_heads=self.num_attention_heads,
            encoder_ffn_dim=self.intermediate_size,
            decoder_ffn_dim=self.intermediate_size,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            eos_token_ids=[2],
            bos_token_id=self.bos_token_id,
            pad_token_id=self.pad_token_id,
            decoder_start_token_id=self.pad_token_id,
            **self.config_updates,
        )
        inputs_dict = prepare_mbart_inputs_dict(config, input_ids, decoder_input_ids)
        return config, inputs_dict
102

103
104
105
    def check_decoder_model_past_large_inputs(self, config, inputs_dict):
        model = TFMBartModel(config=config).get_decoder()
        input_ids = inputs_dict["input_ids"]
106

107
108
        input_ids = input_ids[:1, :]
        attention_mask = inputs_dict["attention_mask"][:1, :]
109
        head_mask = inputs_dict["head_mask"]
110
        self.batch_size = 1
111

112
        # first forward pass
113
        outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True)
114

115
116
        output, past_key_values = outputs.to_tuple()
        past_key_values = past_key_values[1]
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

    def test_compile_tf_model(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        optimizer = tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08, clipnorm=1.0)
        loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
        metric = tf.keras.metrics.SparseCategoricalAccuracy("accuracy")
        model_class = self.all_generative_model_classes[0]
        input_ids = {
            "decoder_input_ids": tf.keras.Input(batch_shape=(2, 2000), name="decoder_input_ids", dtype="int32"),
            "input_ids": tf.keras.Input(batch_shape=(2, 2000), name="input_ids", dtype="int32"),
        }
        # Prepare our model
        model = model_class(config)
        model(self._prepare_for_class(inputs_dict, model_class))  # Model must be called before saving.
        # Let's load it from the disk to be sure we can use pretrained weights
        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_pretrained(tmpdirname)
            model = model_class.from_pretrained(tmpdirname)
        outputs_dict = model(input_ids)
        hidden_states = outputs_dict[0]
        # Add a dense layer on top to test integration with other keras modules
        outputs = tf.keras.layers.Dense(2, activation="softmax", name="outputs")(hidden_states)
        # Compile extended model
        extended_model = tf.keras.Model(inputs=[input_ids], outputs=[outputs])
        extended_model.compile(optimizer=optimizer, loss=loss, metrics=[metric])

144
145
146
147
148
149
150

def prepare_mbart_inputs_dict(
    config,
    input_ids,
    decoder_input_ids,
    attention_mask=None,
    decoder_attention_mask=None,
151
152
    head_mask=None,
    decoder_head_mask=None,
153
    cross_attn_head_mask=None,
154
155
156
157
158
159
160
161
162
163
164
):
    if attention_mask is None:
        attention_mask = tf.cast(tf.math.not_equal(input_ids, config.pad_token_id), tf.int8)
    if decoder_attention_mask is None:
        decoder_attention_mask = tf.concat(
            [
                tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.int8),
                tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id), tf.int8),
            ],
            axis=-1,
        )
165
166
167
168
    if head_mask is None:
        head_mask = tf.ones((config.encoder_layers, config.encoder_attention_heads))
    if decoder_head_mask is None:
        decoder_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads))
169
170
    if cross_attn_head_mask is None:
        cross_attn_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads))
171
172
173
174
175
    return {
        "input_ids": input_ids,
        "decoder_input_ids": decoder_input_ids,
        "attention_mask": attention_mask,
        "decoder_attention_mask": decoder_attention_mask,
176
        "head_mask": head_mask,
177
178
        "decoder_head_mask": decoder_head_mask,
        "cross_attn_head_mask": cross_attn_head_mask,
179
180
181
182
183
184
185
186
187
    }


@require_tf
class TFMBartModelTest(TFModelTesterMixin, unittest.TestCase):
    all_model_classes = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else ()
    all_generative_model_classes = (TFMBartForConditionalGeneration,) if is_tf_available() else ()
    is_encoder_decoder = True
    test_pruning = False
188
    test_onnx = False
189
190
191
192
193
194
195
196
197
198
199
200

    def setUp(self):
        self.model_tester = TFMBartModelTester(self)
        self.config_tester = ConfigTester(self, config_class=MBartConfig)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_decoder_model_past_large_inputs(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
        self.model_tester.check_decoder_model_past_large_inputs(*config_and_inputs)

201
202
203
204
205
206
    def test_model_common_attributes(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
207
208
209
210
211
212
213
214
215
216
217
218
219

            if model_class in self.all_generative_model_classes:
                x = model.get_output_embeddings()
                assert isinstance(x, tf.keras.layers.Layer)
                name = model.get_bias()
                assert isinstance(name, dict)
                for k, v in name.items():
                    assert isinstance(v, tf.Variable)
            else:
                x = model.get_output_embeddings()
                assert x is None
                name = model.get_bias()
                assert name is None
220

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
    def test_resize_token_embeddings(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def _get_word_embedding_weight(model, embedding_layer):
            if hasattr(embedding_layer, "weight"):
                return embedding_layer.weight
            else:
                # Here we build the word embeddings weights if not exists.
                # And then we retry to get the attribute once built.
                model(model.dummy_inputs)
                if hasattr(embedding_layer, "weight"):
                    return embedding_layer.weight
                else:
                    return None

        for model_class in self.all_model_classes:
            for size in [config.vocab_size - 10, config.vocab_size + 10, None]:
                # build the embeddings
                model = model_class(config=config)
                old_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings())
                old_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings())
                old_final_logits_bias = model.get_bias()

                # reshape the embeddings
                model.resize_token_embeddings(size)
                new_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings())
                new_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings())
                new_final_logits_bias = model.get_bias()

                # check that the resized embeddings size matches the desired size.
                assert_size = size if size is not None else config.vocab_size

                self.assertEqual(new_input_embeddings.shape[0], assert_size)

                # check that weights remain the same after resizing
                models_equal = True
                for p1, p2 in zip(old_input_embeddings.value(), new_input_embeddings.value()):
                    if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                        models_equal = False
                self.assertTrue(models_equal)

                if old_output_embeddings is not None and new_output_embeddings is not None:
                    self.assertEqual(new_output_embeddings.shape[0], assert_size)

                    models_equal = True
                    for p1, p2 in zip(old_output_embeddings.value(), new_output_embeddings.value()):
                        if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                            models_equal = False
                    self.assertTrue(models_equal)

                if old_final_logits_bias is not None and new_final_logits_bias is not None:
                    old_final_logits_bias = old_final_logits_bias["final_logits_bias"]
                    new_final_logits_bias = new_final_logits_bias["final_logits_bias"]
                    self.assertEqual(new_final_logits_bias.shape[0], 1)
                    self.assertEqual(new_final_logits_bias.shape[1], assert_size)

                    models_equal = True
                    for old, new in zip(old_final_logits_bias.value(), new_final_logits_bias.value()):
                        for p1, p2 in zip(old, new):
                            if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                                models_equal = False
                    self.assertTrue(models_equal)

284
285
286
287
    def test_saved_model_creation(self):
        # This test is too long (>30sec) and makes fail the CI
        pass

288

289
290
291
292
293
294
295
296
297
def _assert_tensors_equal(a, b, atol=1e-12, prefix=""):
    """If tensors not close, or a and b arent both tensors, raise a nice Assertion error."""
    if a is None and b is None:
        return True
    try:
        if tf.debugging.assert_near(a, b, atol=atol):
            return True
        raise
    except Exception:
298
299
300
        if len(prefix) > 0:
            prefix = f"{prefix}: "
        raise AssertionError(f"{prefix}{a} != {b}")
301
302
303
304
305
306
307
308
309


def _long_tensor(tok_lst):
    return tf.constant(tok_lst, dtype=tf.int32)


TOLERANCE = 1e-4


310
311
@require_sentencepiece
@require_tokenizers
Lysandre Debut's avatar
Lysandre Debut committed
312
@require_tf
313
class TFMBartModelIntegrationTest(unittest.TestCase):
314
315
316
317
318
319
320
321
322
323
324
325
326
327
    src_text = [
        " UN Chief Says There Is No Military Solution in Syria",
    ]
    expected_text = [
        "艦eful ONU declar膬 c膬 nu exist膬 o solu牛ie militar膬 卯n Siria",
    ]
    model_name = "facebook/mbart-large-en-ro"

    @cached_property
    def tokenizer(self):
        return AutoTokenizer.from_pretrained(self.model_name)

    @cached_property
    def model(self):
328
        model = TFAutoModelForSeq2SeqLM.from_pretrained(self.model_name)
329
330
331
332
333
334
335
        return model

    def _assert_generated_batch_equal_expected(self, **tokenizer_kwargs):
        generated_words = self.translate_src_text(**tokenizer_kwargs)
        self.assertListEqual(self.expected_text, generated_words)

    def translate_src_text(self, **tokenizer_kwargs):
336
        model_inputs = self.tokenizer(self.src_text, **tokenizer_kwargs, return_tensors="tf")
337
338
339
340
341
342
343
344
345
        generated_ids = self.model.generate(
            model_inputs.input_ids, attention_mask=model_inputs.attention_mask, num_beams=2
        )
        generated_words = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
        return generated_words

    @slow
    def test_batch_generation_en_ro(self):
        self._assert_generated_batch_equal_expected()