finetune_trainer.py 11.7 KB
Newer Older
1
2
#!/usr/bin/env python

Suraj Patil's avatar
Suraj Patil committed
3
4
5
6
import logging
import os
import sys
from dataclasses import dataclass, field
7
from typing import Optional
Suraj Patil's avatar
Suraj Patil committed
8

9
import transformers
10
11
12
from seq2seq_trainer import Seq2SeqTrainer
from seq2seq_training_args import Seq2SeqTrainingArguments
from transformers import AutoConfig, AutoModelForSeq2SeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, set_seed
13
from transformers.trainer_utils import EvaluationStrategy, is_main_process
14
from transformers.training_args import ParallelMode
Suraj Patil's avatar
Suraj Patil committed
15
from utils import (
16
    Seq2SeqDataCollator,
Suraj Patil's avatar
Suraj Patil committed
17
18
    Seq2SeqDataset,
    assert_all_frozen,
19
    build_compute_metrics_fn,
20
    check_output_dir,
21
    freeze_embeds,
Suraj Patil's avatar
Suraj Patil committed
22
23
    freeze_params,
    lmap,
24
    save_json,
Suraj Patil's avatar
Suraj Patil committed
25
    use_task_specific_params,
26
    write_txt_file,
Suraj Patil's avatar
Suraj Patil committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
)


logger = logging.getLogger(__name__)


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
49
50
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
Suraj Patil's avatar
Suraj Patil committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
    )
    freeze_encoder: bool = field(default=False, metadata={"help": "Whether tp freeze the encoder."})
    freeze_embeds: bool = field(default=False, metadata={"help": "Whether  to freeze the embeddings."})


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    data_dir: str = field(
        metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."}
    )
    task: Optional[str] = field(
        default="summarization",
        metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"},
    )
    max_source_length: Optional[int] = field(
        default=1024,
        metadata={
            "help": "The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
    )
    max_target_length: Optional[int] = field(
        default=128,
        metadata={
            "help": "The maximum total sequence length for target text after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
    )
    val_max_target_length: Optional[int] = field(
        default=142,
        metadata={
            "help": "The maximum total sequence length for validation target text after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
    )
    test_max_target_length: Optional[int] = field(
        default=142,
        metadata={
            "help": "The maximum total sequence length for test target text after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
    )
    n_train: Optional[int] = field(default=-1, metadata={"help": "# training examples. -1 means use all."})
    n_val: Optional[int] = field(default=-1, metadata={"help": "# validation examples. -1 means use all."})
    n_test: Optional[int] = field(default=-1, metadata={"help": "# test examples. -1 means use all."})
    src_lang: Optional[str] = field(default=None, metadata={"help": "Source language id for translation."})
    tgt_lang: Optional[str] = field(default=None, metadata={"help": "Target language id for translation."})
    eval_beams: Optional[int] = field(default=None, metadata={"help": "# num_beams to use for evaluation."})
103
104
105
106
    ignore_pad_token_for_loss: bool = field(
        default=True,
        metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."},
    )
Suraj Patil's avatar
Suraj Patil committed
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))

    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

123
    check_output_dir(training_args)
Suraj Patil's avatar
Suraj Patil committed
124
125
126
127
128
129
130
131
132
133
134
135

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        training_args.local_rank,
        training_args.device,
        training_args.n_gpu,
136
        bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED),
Suraj Patil's avatar
Suraj Patil committed
137
138
        training_args.fp16,
    )
139
140
141
142
143
    # Set the verbosity to info of the Transformers logger (on main process only):
    if is_main_process(training_args.local_rank):
        transformers.utils.logging.set_verbosity_info()
        transformers.utils.logging.enable_default_handler()
        transformers.utils.logging.enable_explicit_format()
Suraj Patil's avatar
Suraj Patil committed
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
    logger.info("Training/evaluation parameters %s", training_args)

    # Set seed
    set_seed(training_args.seed)

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.

    config = AutoConfig.from_pretrained(
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
    )
159
160
161
162
163
164
165

    extra_model_params = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout")
    for p in extra_model_params:
        if getattr(training_args, p, None):
            assert hasattr(config, p), f"({config.__class__.__name__}) doesn't have a `{p}` attribute"
            setattr(config, p, getattr(training_args, p))

Suraj Patil's avatar
Suraj Patil committed
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
    )
    model = AutoModelForSeq2SeqLM.from_pretrained(
        model_args.model_name_or_path,
        from_tf=".ckpt" in model_args.model_name_or_path,
        config=config,
        cache_dir=model_args.cache_dir,
    )

    # use task specific params
    use_task_specific_params(model, data_args.task)

    # set num_beams for evaluation
181
182
    if data_args.eval_beams is None:
        data_args.eval_beams = model.config.num_beams
Suraj Patil's avatar
Suraj Patil committed
183
184
185

    # set decoder_start_token_id for MBart
    if model.config.decoder_start_token_id is None and isinstance(tokenizer, MBartTokenizer):
186
187
188
189
        assert (
            data_args.tgt_lang is not None and data_args.src_lang is not None
        ), "mBart requires --tgt_lang and --src_lang"
        model.config.decoder_start_token_id = tokenizer.lang_code_to_id[data_args.tgt_lang]
Suraj Patil's avatar
Suraj Patil committed
190
191
192
193
194
195
196

    if model_args.freeze_embeds:
        freeze_embeds(model)
    if model_args.freeze_encoder:
        freeze_params(model.get_encoder())
        assert_all_frozen(model.get_encoder())

197
    dataset_class = Seq2SeqDataset
Suraj Patil's avatar
Suraj Patil committed
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

    # Get datasets
    train_dataset = (
        dataset_class(
            tokenizer,
            type_path="train",
            data_dir=data_args.data_dir,
            n_obs=data_args.n_train,
            max_target_length=data_args.max_target_length,
            max_source_length=data_args.max_source_length,
            prefix=model.config.prefix or "",
        )
        if training_args.do_train
        else None
    )
    eval_dataset = (
        dataset_class(
            tokenizer,
            type_path="val",
            data_dir=data_args.data_dir,
            n_obs=data_args.n_val,
            max_target_length=data_args.val_max_target_length,
            max_source_length=data_args.max_source_length,
            prefix=model.config.prefix or "",
        )
223
        if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO
Suraj Patil's avatar
Suraj Patil committed
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
        else None
    )
    test_dataset = (
        dataset_class(
            tokenizer,
            type_path="test",
            data_dir=data_args.data_dir,
            n_obs=data_args.n_test,
            max_target_length=data_args.test_max_target_length,
            max_source_length=data_args.max_source_length,
            prefix=model.config.prefix or "",
        )
        if training_args.do_predict
        else None
    )

    # Initialize our Trainer
241
242
243
    compute_metrics_fn = (
        build_compute_metrics_fn(data_args.task, tokenizer) if training_args.predict_with_generate else None
    )
Suraj Patil's avatar
Suraj Patil committed
244
245
    trainer = Seq2SeqTrainer(
        model=model,
246
        config=config,
Suraj Patil's avatar
Suraj Patil committed
247
248
249
250
        args=training_args,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
        data_collator=Seq2SeqDataCollator(tokenizer, data_args, training_args.tpu_num_cores),
251
        compute_metrics=compute_metrics_fn,
252
        data_args=data_args,
Suraj Patil's avatar
Suraj Patil committed
253
254
255
256
257
258
259
260
261
262
263
    )

    # Training
    if training_args.do_train:
        trainer.train(
            model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None
        )
        trainer.save_model()
        # For convenience, we also re-save the tokenizer to the same directory,
        # so that you can share your model easily on huggingface.co/models =)
        if trainer.is_world_process_zero():
264
            trainer.state.save_to_json(os.path.join(training_args.output_dir, "trainer_state.json"))
Suraj Patil's avatar
Suraj Patil committed
265
266
267
268
269
270
271
272
273
274
275
276
277
            tokenizer.save_pretrained(training_args.output_dir)

    # Evaluation
    eval_results = {}
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

        result = trainer.evaluate()

        if trainer.is_world_process_zero():
            logger.info("***** Eval results *****")
            for key, value in result.items():
                logger.info("  %s = %s", key, value)
278
            save_json(result, os.path.join(training_args.output_dir, "eval_results.json"))
Suraj Patil's avatar
Suraj Patil committed
279
280
281
282
283
284
            eval_results.update(result)

    if training_args.do_predict:
        logging.info("*** Test ***")

        test_output = trainer.predict(test_dataset=test_dataset)
285
        test_metrics = {k.replace("eval", "test"): v for k, v in test_output.metrics.items()}
Suraj Patil's avatar
Suraj Patil committed
286
287
288
289
290
291

        if trainer.is_world_process_zero():
            logger.info("***** Test results *****")
            for key, value in test_metrics.items():
                logger.info("  %s = %s", key, value)

292
293
            save_json(test_metrics, os.path.join(training_args.output_dir, "test_results.json"))
            eval_results.update(test_metrics)
Suraj Patil's avatar
Suraj Patil committed
294
295

            if training_args.predict_with_generate:
296
297
298
                test_preds = tokenizer.batch_decode(
                    test_output.predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True
                )
Suraj Patil's avatar
Suraj Patil committed
299
                test_preds = lmap(str.strip, test_preds)
300
                write_txt_file(test_preds, os.path.join(training_args.output_dir, "test_generations.txt"))
Suraj Patil's avatar
Suraj Patil committed
301

302
303
    if trainer.is_world_process_zero():
        save_json(eval_results, "all_results.json")
Suraj Patil's avatar
Suraj Patil committed
304
305
306
307
308
309
310
311
312
313
    return eval_results


def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()