tokenization_xlnet.py 8.42 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Tokenization classes for XLNet model."""
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import json
import logging
import os
import sys
from shutil import copyfile
from io import open

import unicodedata
import six

from .file_utils import cached_path
30
from .tokenization_utils import PreTrainedTokenizer, clean_up_tokenization
thomwolf's avatar
thomwolf committed
31
32
33

logger = logging.getLogger(__name__)

34
35
36
37
38
VOCAB_FILES_NAMES = {'vocab_file': 'spiece.model'}

PRETRAINED_VOCAB_FILES_MAP = {
    'vocab_file':
    {
thomwolf's avatar
thomwolf committed
39
    'xlnet-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-large-cased-spiece.model",
40
    }
thomwolf's avatar
thomwolf committed
41
}
42
43
44
45
46

PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
    'xlnet-large-cased': 512,
}

thomwolf's avatar
thomwolf committed
47
48
VOCAB_NAME = 'spiece.model'

49
50
51
SPIECE_UNDERLINE = u'▁'

# Segments (not really needed)
52
53
54
55
56
SEG_ID_A   = 0
SEG_ID_B   = 1
SEG_ID_CLS = 2
SEG_ID_SEP = 3
SEG_ID_PAD = 4
thomwolf's avatar
thomwolf committed
57

58
class XLNetTokenizer(PreTrainedTokenizer):
thomwolf's avatar
thomwolf committed
59
60
61
62
    """
        SentencePiece based tokenizer. Peculiarities:
            - requires SentencePiece: https://github.com/google/sentencepiece
    """
63
64
65
66
67
68
69
70
71
72
73
74
    # Tokens
    special_symbols = {
        "<unk>"  : 0,
        "<s>"    : 1,
        "</s>"   : 2,
        "<cls>"  : 3,
        "<sep>"  : 4,
        "<pad>"  : 5,
        "<mask>" : 6,
        "<eod>"  : 7,
        "<eop>"  : 8,
    }
75
76
77
    vocab_files_names = VOCAB_FILES_NAMES
    pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
    max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
thomwolf's avatar
thomwolf committed
78

79
    def __init__(self, vocab_file, max_len=None,
thomwolf's avatar
thomwolf committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
                 do_lower_case=False, remove_space=True, keep_accents=False):
        try:
            import sentencepiece as spm
        except ImportError:
            logger.warning("You need to install SentencePiece to use XLNetTokenizer: https://github.com/google/sentencepiece"
                           "pip install sentencepiece")

        self.max_len = max_len if max_len is not None else int(1e12)
        self.do_lower_case = do_lower_case
        self.remove_space = remove_space
        self.keep_accents = keep_accents
        self.vocab_file = vocab_file

        self.sp_model = spm.SentencePieceProcessor()
        self.sp_model.Load(vocab_file)

96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
    @property
    def UNK_TOKEN(self):
        return "<unk>"

    @property
    def SEP_TOKEN(self):
        return "<sep>"

    @property
    def PAD_TOKEN(self):
        return "<pad>"

    @property
    def CLS_TOKEN(self):
        return "<cls>"

    @property
    def MASK_TOKEN(self):
        return "<mask>"

    @property
    def UNK_ID(self):
        return self.special_symbols["<unk>"]

    @property
    def SEP_ID(self):
        return self.special_symbols["<sep>"]

    @property
    def PAD_ID(self):
        return self.special_symbols["<pad>"]

    @property
    def CLS_ID(self):
        return self.special_symbols["<cls>"]

    @property
    def MASK_ID(self):
        return self.special_symbols["<mask>"]

thomwolf's avatar
thomwolf committed
136
    def __len__(self):
137
        return len(self.sp_model)
thomwolf's avatar
thomwolf committed
138

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
    def __getstate__(self):
        state = self.__dict__.copy()
        state["sp_model"] = None
        return state

    def __setstate__(self, d):
        self.__dict__ = d
        try:
            import sentencepiece as spm
        except ImportError:
            logger.warning("You need to install SentencePiece to use XLNetTokenizer: https://github.com/google/sentencepiece"
                           "pip install sentencepiece")
        self.sp_model = spm.SentencePieceProcessor()
        self.sp_model.Load(self.vocab_file)

thomwolf's avatar
thomwolf committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
    def preprocess_text(self, inputs):
        if self.remove_space:
            outputs = ' '.join(inputs.strip().split())
        else:
            outputs = inputs
        outputs = outputs.replace("``", '"').replace("''", '"')

        if six.PY2 and isinstance(outputs, str):
            outputs = outputs.decode('utf-8')

        if not self.keep_accents:
            outputs = unicodedata.normalize('NFKD', outputs)
            outputs = ''.join([c for c in outputs if not unicodedata.combining(c)])
        if self.do_lower_case:
            outputs = outputs.lower()

        return outputs

    def tokenize(self, text, return_unicode=True, sample=False):
        """ Tokenize a string.
            return_unicode is used only for py2
        """
        text = self.preprocess_text(text)
        # note(zhiliny): in some systems, sentencepiece only accepts str for py2
        if six.PY2 and isinstance(text, unicode):
            text = text.encode('utf-8')

        if not sample:
            pieces = self.sp_model.EncodeAsPieces(text)
        else:
            pieces = self.sp_model.SampleEncodeAsPieces(text, 64, 0.1)
        new_pieces = []
        for piece in pieces:
            if len(piece) > 1 and piece[-1] == ',' and piece[-2].isdigit():
                cur_pieces = self.sp_model.EncodeAsPieces(
                    piece[:-1].replace(SPIECE_UNDERLINE, ''))
                if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
                    if len(cur_pieces[0]) == 1:
                        cur_pieces = cur_pieces[1:]
                    else:
                        cur_pieces[0] = cur_pieces[0][1:]
                cur_pieces.append(piece[-1])
                new_pieces.extend(cur_pieces)
            else:
                new_pieces.append(piece)

        # note(zhiliny): convert back to unicode for py2
        if six.PY2 and return_unicode:
            ret_pieces = []
            for piece in new_pieces:
                if isinstance(piece, str):
                    piece = piece.decode('utf-8')
                ret_pieces.append(piece)
            new_pieces = ret_pieces

        return new_pieces

    def convert_tokens_to_ids(self, tokens, sample=False):
        """ Converts a sequence of tokens into ids using the vocab. """
        ids = []
        if isinstance(tokens, str) or (sys.version_info[0] == 2 and isinstance(tokens, unicode)):
215
            return self.sp_model.PieceToId(tokens)
thomwolf's avatar
thomwolf committed
216
        for token in tokens:
217
            ids.append(self.sp_model.PieceToId(token))
thomwolf's avatar
thomwolf committed
218
219
220
221
222
223
224
225
        if len(ids) > self.max_len:
            logger.warning(
                "Token indices sequence length is longer than the specified maximum "
                " sequence length for this XLNet model ({} > {}). Running this"
                " sequence through the model will result in indexing errors".format(len(ids), self.max_len)
            )
        return ids

226
    def convert_ids_to_tokens(self, ids, return_unicode=True):
thomwolf's avatar
thomwolf committed
227
228
229
        """Converts a sequence of ids in tokens."""
        tokens = []
        for i in ids:
230
            tokens.append(self.sp_model.IdToPiece(i))
thomwolf's avatar
thomwolf committed
231
232
233
234
235
236
237
238

        if six.PY2 and return_unicode:
            ret_pieces = []
            for piece in tokens:
                if isinstance(piece, str):
                    piece = piece.decode('utf-8')
                ret_pieces.append(piece)
            tokens = ret_pieces
thomwolf's avatar
thomwolf committed
239
240
241
242
243
        return tokens

    def encode(self, text, sample=False):
        return self.convert_tokens_to_ids(self.tokenize(text, sample=sample))

244
    def decode(self, ids, clean_up_tokenization_spaces=True):
thomwolf's avatar
thomwolf committed
245
        """Converts a sequence of ids in a string."""
246
        tokens = self.convert_ids_to_tokens(ids)
thomwolf's avatar
thomwolf committed
247
248
249
        out_string = ''.join(tokens)
        if clean_up_tokenization_spaces:
            out_string = out_string.strip().replace('<unk>', '')
250
            out_string = clean_up_tokenization(out_string)
thomwolf's avatar
thomwolf committed
251
252
253
254
255
256
257
258
259
260
261
262
263
        return out_string

    def save_vocabulary(self, vocab_path):
        """ Save the sentencepiece vocabulary (copy original file) and special tokens file
            to a directory.
        """
        if not os.path.isdir(vocab_path):
            logger.error("Vocabulary path ({}) should be a directory".format(vocab_path))
            return
        out_vocab_file = os.path.join(vocab_path, VOCAB_NAME)

        copyfile(self.vocab_file, out_vocab_file)

264
        return (out_vocab_file,)