tokenization_gpt2.py 11.1 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for OpenAI GPT."""
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

19
import sys
thomwolf's avatar
thomwolf committed
20
21
22
23
24
25
import json
import logging
import os
import regex as re
from io import open

26
27
28
29
30
try:
    from functools import lru_cache
except ImportError:
    # Just a dummy decorator to get the checks to run on python2
    # because honestly I don't want to support a byte-level unicode BPE tokenizer on python 2 right now.
thomwolf's avatar
simple  
thomwolf committed
31
32
    def lru_cache():
        return lambda func: func
thomwolf's avatar
thomwolf committed
33

34
from .tokenization_utils import PreTrainedTokenizer, clean_up_tokenization
thomwolf's avatar
thomwolf committed
35
36
37

logger = logging.getLogger(__name__)

38
39
40
41
VOCAB_FILES_NAMES = {
    'vocab_file': 'vocab.json',
    'merges_file': 'merges.txt',
    'special_tokens_file': 'special_tokens.txt'
thomwolf's avatar
thomwolf committed
42
}
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

PRETRAINED_VOCAB_FILES_MAP = {
    'vocab_file':
    {
        'gpt2': "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-vocab.json",
        'gpt2-medium': "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-vocab.json",
    },
    'merges_file':
    {
        'gpt2': "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-merges.txt",
        'gpt2-medium': "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-merges.txt",
    },
    'special_tokens_file':
    {
        'gpt2': None,
        'gpt2-medium': None,
    }
thomwolf's avatar
thomwolf committed
60
}
61
62

PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
thomwolf's avatar
thomwolf committed
63
    'gpt2': 1024,
64
    'gpt2-medium': 1024,
thomwolf's avatar
thomwolf committed
65
66
67
68
69
70
71
72
73
74
75
76
77
}

@lru_cache()
def bytes_to_unicode():
    """
    Returns list of utf-8 byte and a corresponding list of unicode strings.
    The reversible bpe codes work on unicode strings.
    This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
    When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
    This is a signficant percentage of your normal, say, 32K bpe vocab.
    To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
    And avoids mapping to whitespace/control characters the bpe code barfs on.
    """
78
    _chr = unichr if sys.version_info[0] == 2 else chr
thomwolf's avatar
thomwolf committed
79
80
81
82
83
84
85
86
    bs = list(range(ord("!"), ord("~")+1))+list(range(ord("隆"), ord("卢")+1))+list(range(ord("庐"), ord("每")+1))
    cs = bs[:]
    n = 0
    for b in range(2**8):
        if b not in bs:
            bs.append(b)
            cs.append(2**8+n)
            n += 1
87
    cs = [_chr(n) for n in cs]
thomwolf's avatar
thomwolf committed
88
89
90
91
92
93
94
95
96
97
98
99
100
101
    return dict(zip(bs, cs))

def get_pairs(word):
    """Return set of symbol pairs in a word.

    Word is represented as tuple of symbols (symbols being variable-length strings).
    """
    pairs = set()
    prev_char = word[0]
    for char in word[1:]:
        pairs.add((prev_char, char))
        prev_char = char
    return pairs

102
class GPT2Tokenizer(PreTrainedTokenizer):
thomwolf's avatar
thomwolf committed
103
104
105
106
    """
    GPT-2 BPE tokenizer. Peculiarities:
        - Byte-level BPE
    """
107
108
109
    vocab_files_names = VOCAB_FILES_NAMES
    pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
    max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
thomwolf's avatar
thomwolf committed
110

111
    def __init__(self, vocab_file, merges_file, special_tokens_file=None, special_tokens=None, errors='replace', max_len=None):
112
        self.max_len = max_len if max_len is not None else int(1e12)
thomwolf's avatar
thomwolf committed
113
114
115
116
117
118
119
120
121
122
123
124
125
        self.encoder = json.load(open(vocab_file))
        self.decoder = {v:k for k,v in self.encoder.items()}
        self.errors = errors # how to handle errors in decoding
        self.byte_encoder = bytes_to_unicode()
        self.byte_decoder = {v:k for k, v in self.byte_encoder.items()}
        bpe_data = open(merges_file, encoding='utf-8').read().split('\n')[1:-1]
        bpe_merges = [tuple(merge.split()) for merge in bpe_data]
        self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
        self.cache = {}

        # Should haved added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
        self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")

126
127
128
129
130
131
132
        all_special_tokens = []
        if special_tokens_file is not None:
            special_tokens_to_add = open(special_tokens_file, encoding='utf-8').read().split('\n')[:-1]
            all_special_tokens.extend(special_tokens_to_add)
        if special_tokens is not None and special_tokens:
            all_special_tokens.extend(special_tokens)

133
134
        self.special_tokens = {}
        self.special_tokens_decoder = {}
135
        self.set_special_tokens(all_special_tokens)
136

thomwolf's avatar
thomwolf committed
137
    def __len__(self):
138
139
140
141
142
143
144
145
146
147
148
149
150
151
        return len(self.encoder) + len(self.special_tokens)

    def set_special_tokens(self, special_tokens):
        """ Add a list of additional tokens to the encoder.
            The additional tokens are indexed starting from the last index of the
            current vocabulary in the order of the `special_tokens` list.
        """
        if not special_tokens:
            self.special_tokens = {}
            self.special_tokens_decoder = {}
            return
        self.special_tokens = dict((tok, len(self.encoder) + i) for i, tok in enumerate(special_tokens))
        self.special_tokens_decoder = {v:k for k, v in self.special_tokens.items()}
        logger.info("Special tokens {}".format(self.special_tokens))
thomwolf's avatar
thomwolf committed
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

    def bpe(self, token):
        if token in self.cache:
            return self.cache[token]
        word = tuple(token)
        pairs = get_pairs(word)

        if not pairs:
            return token

        while True:
            bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
            if bigram not in self.bpe_ranks:
                break
            first, second = bigram
            new_word = []
            i = 0
            while i < len(word):
                try:
                    j = word.index(first, i)
                    new_word.extend(word[i:j])
                    i = j
                except:
                    new_word.extend(word[i:])
                    break

                if word[i] == first and i < len(word)-1 and word[i+1] == second:
                    new_word.append(first+second)
                    i += 2
                else:
                    new_word.append(word[i])
                    i += 1
            new_word = tuple(new_word)
            word = new_word
            if len(word) == 1:
                break
            else:
                pairs = get_pairs(word)
        word = ' '.join(word)
        self.cache[token] = word
        return word

194
195
196
197
    def tokenize(self, text):
        """ Tokenize a string. """
        bpe_tokens = []
        for token in re.findall(self.pat, text):
Ben Mann's avatar
Ben Mann committed
198
199
200
201
            if sys.version_info[0] == 2:
                token = ''.join(self.byte_encoder[ord(b)] for b in token)
            else:
                token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
            bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(' '))
        return bpe_tokens

    def convert_tokens_to_ids(self, tokens):
        """ Converts a sequence of tokens into ids using the vocab. """
        ids = []
        if isinstance(tokens, str) or (sys.version_info[0] == 2 and isinstance(tokens, unicode)):
            if tokens in self.special_tokens:
                return self.special_tokens[tokens]
            else:
                return self.encoder.get(tokens, 0)
        for token in tokens:
            if token in self.special_tokens:
                ids.append(self.special_tokens[token])
            else:
                ids.append(self.encoder.get(token, 0))
        if len(ids) > self.max_len:
            logger.warning(
                "Token indices sequence length is longer than the specified maximum "
                " sequence length for this OpenAI GPT model ({} > {}). Running this"
                " sequence through the model will result in indexing errors".format(len(ids), self.max_len)
            )
        return ids

    def convert_ids_to_tokens(self, ids, skip_special_tokens=False):
        """Converts a sequence of ids in BPE tokens using the vocab."""
        tokens = []
        for i in ids:
            if i in self.special_tokens_decoder:
                if not skip_special_tokens:
                    tokens.append(self.special_tokens_decoder[i])
            else:
                tokens.append(self.decoder[i])
        return tokens

    def encode(self, text):
        return self.convert_tokens_to_ids(self.tokenize(text))

thomwolf's avatar
thomwolf committed
240
    def decode(self, tokens, skip_special_tokens=False, clean_up_tokenization_spaces=True):
241
        text = ''.join(self.convert_ids_to_tokens(tokens, skip_special_tokens=skip_special_tokens))
242
        text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors=self.errors)
thomwolf's avatar
thomwolf committed
243
244
        if clean_up_tokenization_spaces:
            text = text.replace('<unk>', '')
245
            text = clean_up_tokenization(text)
246
247
        return text

248
    def save_vocabulary(self, vocab_path):
249
250
251
252
        """Save the tokenizer vocabulary and merge files to a directory."""
        if not os.path.isdir(vocab_path):
            logger.error("Vocabulary path ({}) should be a directory".format(vocab_path))
            return
253
254
255
        vocab_file = os.path.join(vocab_path, VOCAB_FILES_NAMES['vocab_file'])
        merge_file = os.path.join(vocab_path, VOCAB_FILES_NAMES['merges_file'])
        special_tokens_file = os.path.join(vocab_path, VOCAB_FILES_NAMES['special_tokens_file'])
thomwolf's avatar
thomwolf committed
256
257
258
259

        with open(vocab_file, 'w', encoding='utf-8') as f:
            f.write(json.dumps(self.encoder, ensure_ascii=False))

260
261
262
263
264
265
266
267
        index = 0
        with open(merge_file, "w", encoding="utf-8") as writer:
            writer.write(u'#version: 0.2\n')
            for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
                if index != token_index:
                    logger.warning("Saving vocabulary to {}: BPE merge indices are not consecutive."
                                   " Please check that the tokenizer is not corrupted!".format(merge_file))
                    index = token_index
thomwolf's avatar
thomwolf committed
268
                writer.write(' '.join(bpe_tokens) + u'\n')
269
                index += 1
thomwolf's avatar
thomwolf committed
270

271
        index = len(self.encoder)
thomwolf's avatar
thomwolf committed
272
        with open(special_tokens_file, 'w', encoding='utf-8') as writer:
273
274
275
276
277
            for token, token_index in sorted(self.special_tokens.items(), key=lambda kv: kv[1]):
                if index != token_index:
                    logger.warning("Saving special tokens vocabulary to {}: BPE indices are not consecutive."
                                   " Please check that the tokenizer is not corrupted!".format(special_tokens_file))
                    index = token_index
thomwolf's avatar
thomwolf committed
278
                writer.write(token + u'\n')
279
                index += 1
thomwolf's avatar
thomwolf committed
280
281

        return vocab_file, merge_file, special_tokens_file