"tests/funnel/test_modeling_tf_funnel.py" did not exist on "cd9a0585eadbaf4a83a98ec8774320cefe185093"
test_modeling_beit.py 18.5 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch BEiT model. """


import inspect
import unittest

21
from datasets import load_dataset
22
from packaging import version
23

NielsRogge's avatar
NielsRogge committed
24
25
from transformers import BeitConfig
from transformers.models.auto import get_values
26
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
27
from transformers.utils import cached_property, is_torch_available, is_vision_available
NielsRogge's avatar
NielsRogge committed
28

Yih-Dar's avatar
Yih-Dar committed
29
30
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
NielsRogge's avatar
NielsRogge committed
31
32
33
34
35
36


if is_torch_available():
    import torch
    from torch import nn

37
38
39
40
41
42
43
    from transformers import (
        MODEL_MAPPING,
        BeitForImageClassification,
        BeitForMaskedImageModeling,
        BeitForSemanticSegmentation,
        BeitModel,
    )
44
    from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST
NielsRogge's avatar
NielsRogge committed
45
46
47


if is_vision_available():
48
    import PIL
NielsRogge's avatar
NielsRogge committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
    from PIL import Image

    from transformers import BeitFeatureExtractor


class BeitModelTester:
    def __init__(
        self,
        parent,
        vocab_size=100,
        batch_size=13,
        image_size=30,
        patch_size=2,
        num_channels=3,
        is_training=True,
        use_labels=True,
        hidden_size=32,
66
        num_hidden_layers=4,
NielsRogge's avatar
NielsRogge committed
67
68
69
70
71
72
73
74
75
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        type_sequence_label_size=10,
        initializer_range=0.02,
        num_labels=3,
        scope=None,
76
        out_indices=[0, 1, 2, 3],
NielsRogge's avatar
NielsRogge committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
    ):
        self.parent = parent
        self.vocab_size = 100
        self.batch_size = batch_size
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.is_training = is_training
        self.use_labels = use_labels
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.scope = scope
96
        self.out_indices = out_indices
97
        self.num_labels = num_labels
NielsRogge's avatar
NielsRogge committed
98

NielsRogge's avatar
NielsRogge committed
99
        # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
100
        num_patches = (image_size // patch_size) ** 2
NielsRogge's avatar
NielsRogge committed
101
        self.seq_length = num_patches + 1
102

NielsRogge's avatar
NielsRogge committed
103
104
105
106
    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])

        labels = None
107
        pixel_labels = None
NielsRogge's avatar
NielsRogge committed
108
109
        if self.use_labels:
            labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
110
            pixel_labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels)
NielsRogge's avatar
NielsRogge committed
111
112
113

        config = self.get_config()

114
        return config, pixel_values, labels, pixel_labels
NielsRogge's avatar
NielsRogge committed
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

    def get_config(self):
        return BeitConfig(
            vocab_size=self.vocab_size,
            image_size=self.image_size,
            patch_size=self.patch_size,
            num_channels=self.num_channels,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            is_decoder=False,
            initializer_range=self.initializer_range,
131
            out_indices=self.out_indices,
NielsRogge's avatar
NielsRogge committed
132
133
        )

134
    def create_and_check_model(self, config, pixel_values, labels, pixel_labels):
NielsRogge's avatar
NielsRogge committed
135
136
137
138
        model = BeitModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
NielsRogge's avatar
NielsRogge committed
139
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
NielsRogge's avatar
NielsRogge committed
140

141
    def create_and_check_for_masked_lm(self, config, pixel_values, labels, pixel_labels):
NielsRogge's avatar
NielsRogge committed
142
143
144
145
        model = BeitForMaskedImageModeling(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
NielsRogge's avatar
NielsRogge committed
146
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size))
NielsRogge's avatar
NielsRogge committed
147

148
    def create_and_check_for_image_classification(self, config, pixel_values, labels, pixel_labels):
NielsRogge's avatar
NielsRogge committed
149
150
151
152
153
154
155
        config.num_labels = self.type_sequence_label_size
        model = BeitForImageClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values, labels=labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))

NielsRogge's avatar
NielsRogge committed
156
157
158
159
160
161
162
163
164
165
        # test greyscale images
        config.num_channels = 1
        model = BeitForImageClassification(config)
        model.to(torch_device)
        model.eval()

        pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
        result = model(pixel_values, labels=labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))

NielsRogge's avatar
NielsRogge committed
166
    def create_and_check_for_semantic_segmentation(self, config, pixel_values, labels, pixel_labels):
167
168
169
170
171
172
        config.num_labels = self.num_labels
        model = BeitForSemanticSegmentation(config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
        self.parent.assertEqual(
173
            result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2)
174
175
176
        )
        result = model(pixel_values, labels=pixel_labels)
        self.parent.assertEqual(
177
            result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2)
178
179
        )

NielsRogge's avatar
NielsRogge committed
180
181
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
182
        config, pixel_values, labels, pixel_labels = config_and_inputs
NielsRogge's avatar
NielsRogge committed
183
184
185
186
187
188
189
190
191
192
193
194
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_torch
class BeitModelTest(ModelTesterMixin, unittest.TestCase):
    """
    Here we also overwrite some of the tests of test_modeling_common.py, as BEiT does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

    all_model_classes = (
195
196
197
        (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation)
        if is_torch_available()
        else ()
NielsRogge's avatar
NielsRogge committed
198
199
200
201
202
203
204
205
206
207
208
209
210
    )

    test_pruning = False
    test_resize_embeddings = False
    test_head_masking = False

    def setUp(self):
        self.model_tester = BeitModelTester(self)
        self.config_tester = ConfigTester(self, config_class=BeitConfig, has_text_modality=False, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

NielsRogge's avatar
NielsRogge committed
211
    @unittest.skip(reason="BEiT does not use inputs_embeds")
NielsRogge's avatar
NielsRogge committed
212
213
214
    def test_inputs_embeds(self):
        pass

215
216
217
218
219
    @require_torch_multi_gpu
    @unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`")
    def test_multi_gpu_data_parallel_forward(self):
        pass

NielsRogge's avatar
NielsRogge committed
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
    def test_model_common_attributes(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, nn.Linear))

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["pixel_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

NielsRogge's avatar
NielsRogge committed
245
246
247
248
249
250
251
252
253
    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)

    def test_for_image_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_image_classification(*config_and_inputs)

    def test_for_semantic_segmentation(self):
254
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
NielsRogge's avatar
NielsRogge committed
255
        self.model_tester.create_and_check_for_semantic_segmentation(*config_and_inputs)
256

NielsRogge's avatar
NielsRogge committed
257
258
259
260
261
262
263
264
265
    def test_training(self):
        if not self.model_tester.is_training:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        for model_class in self.all_model_classes:
            # we don't test BeitForMaskedImageModeling
266
            if model_class in [*get_values(MODEL_MAPPING), BeitForMaskedImageModeling]:
267
                continue
268

269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    def test_training_gradient_checkpointing(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.model_tester.is_training:
            return

        config.use_cache = False
        config.return_dict = True

        for model_class in self.all_model_classes:
            # we don't test BeitForMaskedImageModeling
286
287
288
289
            if (
                model_class in [*get_values(MODEL_MAPPING), BeitForMaskedImageModeling]
                or not model_class.supports_gradient_checkpointing
            ):
NielsRogge's avatar
NielsRogge committed
290
                continue
NielsRogge's avatar
NielsRogge committed
291

NielsRogge's avatar
NielsRogge committed
292
            model = model_class(config)
293
            model.gradient_checkpointing_enable()
NielsRogge's avatar
NielsRogge committed
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    def test_initialization(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                # we skip lambda parameters as these require special initial values
                # determined by config.layer_scale_init_value
                if "lambda" in name:
                    continue
                if param.requires_grad:
                    self.assertIn(
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
                        [0.0, 1.0],
                        msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                    )

    @slow
    def test_model_from_pretrained(self):
        for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = BeitModel.from_pretrained(model_name)
            self.assertIsNotNone(model)


# We will verify our results on an image of cute cats
def prepare_img():
    image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
    return image


331
@require_torch
NielsRogge's avatar
NielsRogge committed
332
333
334
335
336
337
338
339
@require_vision
class BeitModelIntegrationTest(unittest.TestCase):
    @cached_property
    def default_feature_extractor(self):
        return (
            BeitFeatureExtractor.from_pretrained("microsoft/beit-base-patch16-224") if is_vision_available() else None
        )

340
341
342
343
344
345
346
347
348
349
350
351
    @slow
    def test_inference_masked_image_modeling_head(self):
        model = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k").to(torch_device)

        feature_extractor = self.default_feature_extractor
        image = prepare_img()
        pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values.to(torch_device)

        # prepare bool_masked_pos
        bool_masked_pos = torch.ones((1, 196), dtype=torch.bool).to(torch_device)

        # forward pass
352
353
        with torch.no_grad():
            outputs = model(pixel_values=pixel_values, bool_masked_pos=bool_masked_pos)
354
355
356
357
358
359
360
361
362
363
364
365
        logits = outputs.logits

        # verify the logits
        expected_shape = torch.Size((1, 196, 8192))
        self.assertEqual(logits.shape, expected_shape)

        expected_slice = torch.tensor(
            [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]]
        ).to(torch_device)

        self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3], expected_slice, atol=1e-2))

NielsRogge's avatar
NielsRogge committed
366
367
368
369
370
371
372
373
374
    @slow
    def test_inference_image_classification_head_imagenet_1k(self):
        model = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224").to(torch_device)

        feature_extractor = self.default_feature_extractor
        image = prepare_img()
        inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device)

        # forward pass
375
376
        with torch.no_grad():
            outputs = model(**inputs)
NielsRogge's avatar
NielsRogge committed
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
        logits = outputs.logits

        # verify the logits
        expected_shape = torch.Size((1, 1000))
        self.assertEqual(logits.shape, expected_shape)

        expected_slice = torch.tensor([-1.2385, -1.0987, -1.0108]).to(torch_device)

        self.assertTrue(torch.allclose(logits[0, :3], expected_slice, atol=1e-4))

        expected_class_idx = 281
        self.assertEqual(logits.argmax(-1).item(), expected_class_idx)

    @slow
    def test_inference_image_classification_head_imagenet_22k(self):
        model = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k").to(
            torch_device
        )

        feature_extractor = self.default_feature_extractor
        image = prepare_img()
        inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device)

        # forward pass
401
402
        with torch.no_grad():
            outputs = model(**inputs)
NielsRogge's avatar
NielsRogge committed
403
404
405
406
407
408
409
410
411
412
413
414
        logits = outputs.logits

        # verify the logits
        expected_shape = torch.Size((1, 21841))
        self.assertEqual(logits.shape, expected_shape)

        expected_slice = torch.tensor([1.6881, -0.2787, 0.5901]).to(torch_device)

        self.assertTrue(torch.allclose(logits[0, :3], expected_slice, atol=1e-4))

        expected_class_idx = 2396
        self.assertEqual(logits.argmax(-1).item(), expected_class_idx)
415
416
417
418
419
420
421
422
423
424
425
426
427

    @slow
    def test_inference_semantic_segmentation(self):
        model = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640")
        model = model.to(torch_device)

        feature_extractor = BeitFeatureExtractor(do_resize=True, size=640, do_center_crop=False)

        ds = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")
        image = Image.open(ds[0]["file"])
        inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device)

        # forward pass
428
429
        with torch.no_grad():
            outputs = model(**inputs)
430
431
432
        logits = outputs.logits

        # verify the logits
433
        expected_shape = torch.Size((1, 150, 160, 160))
434
435
        self.assertEqual(logits.shape, expected_shape)

436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
        is_pillow_less_than_9 = version.parse(PIL.__version__) < version.parse("9.0.0")

        if is_pillow_less_than_9:
            expected_slice = torch.tensor(
                [
                    [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]],
                    [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]],
                    [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]],
                ],
                device=torch_device,
            )
        else:
            expected_slice = torch.tensor(
                [
                    [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]],
                    [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]],
                    [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]],
                ],
                device=torch_device,
            )
456
457

        self.assertTrue(torch.allclose(logits[0, :3, :3, :3], expected_slice, atol=1e-4))
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482

    @slow
    def test_post_processing_semantic_segmentation(self):
        model = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640")
        model = model.to(torch_device)

        feature_extractor = BeitFeatureExtractor(do_resize=True, size=640, do_center_crop=False)

        ds = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")
        image = Image.open(ds[0]["file"])
        inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device)

        # forward pass
        with torch.no_grad():
            outputs = model(**inputs)

        outputs.logits = outputs.logits.detach().cpu()

        segmentation = feature_extractor.post_process_semantic_segmentation(outputs=outputs, target_sizes=[(500, 300)])
        expected_shape = torch.Size((500, 300))
        self.assertEqual(segmentation[0].shape, expected_shape)

        segmentation = feature_extractor.post_process_semantic_segmentation(outputs=outputs)
        expected_shape = torch.Size((160, 160))
        self.assertEqual(segmentation[0].shape, expected_shape)