test_modeling_esm.py 11.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch ESM model. """


import unittest

from transformers import EsmConfig, is_torch_available
from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device

from ...generation.test_generation_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask


if is_torch_available():
    import torch

    from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel
    from transformers.models.esm.modeling_esm import (
        ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
        EsmEmbeddings,
        create_position_ids_from_input_ids,
    )


# copied from tests.test_modeling_roberta
class EsmModelTester:
    def __init__(
        self,
        parent,
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = False
        self.use_input_mask = True
        self.use_token_type_ids = False
        self.use_labels = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = random_attention_mask([self.batch_size, self.seq_length])

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = self.get_config()

        return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels

    def get_config(self):
        return EsmConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            pad_token_id=1,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
        )

    def create_and_check_model(self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels):
        model = EsmModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask)
        result = model(input_ids)
        result = model(input_ids)

        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))

    def create_and_check_for_masked_lm(
        self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = EsmForMaskedLM(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask, labels=token_labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))

    def create_and_check_for_token_classification(
        self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = EsmForTokenClassification(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask, labels=token_labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
        return config, inputs_dict


@require_torch
class EsmModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):

    test_mismatched_shapes = False

    all_model_classes = (
        (
            EsmForMaskedLM,
            EsmModel,
            EsmForSequenceClassification,
            EsmForTokenClassification,
        )
        if is_torch_available()
        else ()
    )
    all_generative_model_classes = ()
    test_sequence_classification_problem_types = True

    def setUp(self):
        self.model_tester = EsmModelTester(self)
        self.config_tester = ConfigTester(self, config_class=EsmConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_model_various_embeddings(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        for type in ["absolute", "relative_key", "relative_key_query"]:
            config_and_inputs[0].position_embedding_type = type
            self.model_tester.create_and_check_model(*config_and_inputs)

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)

    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_token_classification(*config_and_inputs)

    @slow
    def test_model_from_pretrained(self):
        for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = EsmModel.from_pretrained(model_name)
            self.assertIsNotNone(model)

    def test_create_position_ids_respects_padding_index(self):
        """Ensure that the default position ids only assign a sequential . This is a regression
        test for https://github.com/huggingface/transformers/issues/1761

        The position ids should be masked with the embedding object's padding index. Therefore, the
        first available non-padding position index is EsmEmbeddings.padding_idx + 1
        """
        config = self.model_tester.prepare_config_and_inputs()[0]
        model = EsmEmbeddings(config=config)

        input_ids = torch.as_tensor([[12, 31, 13, model.padding_idx]])
        expected_positions = torch.as_tensor(
            [
                [
                    0 + model.padding_idx + 1,
                    1 + model.padding_idx + 1,
                    2 + model.padding_idx + 1,
                    model.padding_idx,
                ]
            ]
        )
        position_ids = create_position_ids_from_input_ids(input_ids, model.padding_idx)
        self.assertEqual(position_ids.shape, expected_positions.shape)
        self.assertTrue(torch.all(torch.eq(position_ids, expected_positions)))

    def test_create_position_ids_from_inputs_embeds(self):
        """Ensure that the default position ids only assign a sequential . This is a regression
        test for https://github.com/huggingface/transformers/issues/1761

        The position ids should be masked with the embedding object's padding index. Therefore, the
        first available non-padding position index is EsmEmbeddings.padding_idx + 1
        """
        config = self.model_tester.prepare_config_and_inputs()[0]
        embeddings = EsmEmbeddings(config=config)

        inputs_embeds = torch.empty(2, 4, 30)
        expected_single_positions = [
            0 + embeddings.padding_idx + 1,
            1 + embeddings.padding_idx + 1,
            2 + embeddings.padding_idx + 1,
            3 + embeddings.padding_idx + 1,
        ]
        expected_positions = torch.as_tensor([expected_single_positions, expected_single_positions])
        position_ids = embeddings.create_position_ids_from_inputs_embeds(inputs_embeds)
        self.assertEqual(position_ids.shape, expected_positions.shape)
        self.assertTrue(torch.all(torch.eq(position_ids, expected_positions)))


@require_torch
class EsmModelIntegrationTest(TestCasePlus):
    @slow
    def test_inference_masked_lm(self):
        model = EsmForMaskedLM.from_pretrained("Rocketknight1/esm-2-8m")
        input_ids = torch.tensor([[0, 1, 2, 3, 4, 5]])
        output = model(input_ids)[0]

        vocab_size = 33

        expected_shape = torch.Size((1, 6, vocab_size))
        self.assertEqual(output.shape, expected_shape)

        expected_slice = torch.tensor(
            [[[15.0973, -6.6406, -1.1351], [-0.2209, -9.9622, 4.2109], [-1.6055, -10.0023, 1.5914]]]
        )
        self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))

    @slow
    def test_inference_no_head(self):
        model = EsmModel.from_pretrained("Rocketknight1/esm-2-8m")

        input_ids = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]])
        output = model(input_ids)[0]
        # compare the actual values for a slice.
        expected_slice = torch.tensor(
            [[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]]
        )
        self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))

    def test_lm_head_ignore_keys(self):
        from copy import deepcopy

        keys_to_ignore_on_save_tied = [r"lm_head.decoder.weight", r"lm_head.decoder.bias"]
        keys_to_ignore_on_save_untied = [r"lm_head.decoder.bias"]
        config = EsmConfig.from_pretrained("Rocketknight1/esm-2-8m")
        config_tied = deepcopy(config)
        config_tied.tie_word_embeddings = True
        config_untied = deepcopy(config)
        config_untied.tie_word_embeddings = False
        for cls in [EsmForMaskedLM]:
            model = cls(config_tied)
            self.assertEqual(model._keys_to_ignore_on_save, keys_to_ignore_on_save_tied, cls)

            # the keys should be different when embeddings aren't tied
            model = cls(config_untied)
            self.assertEqual(model._keys_to_ignore_on_save, keys_to_ignore_on_save_untied, cls)

            # test that saving works with updated ignore keys - just testing that it doesn't fail
            model.save_pretrained(self.get_auto_remove_tmp_dir())