plot_csv_file.py 6.25 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
16
17
import csv
from collections import defaultdict
from dataclasses import dataclass, field
18
from typing import List, Optional
19

20
import matplotlib.pyplot as plt
21
import numpy as np
22
from matplotlib.ticker import ScalarFormatter
23
24
25
26

from transformers import HfArgumentParser


27
28
29
30
def list_field(default=None, metadata=None):
    return field(default_factory=lambda: default, metadata=metadata)


31
32
33
34
35
36
@dataclass
class PlotArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
    """

Lysandre's avatar
Lysandre committed
37
38
39
    csv_file: str = field(
        metadata={"help": "The csv file to plot."},
    )
40
41
    plot_along_batch: bool = field(
        default=False,
Santiago Castro's avatar
Santiago Castro committed
42
        metadata={"help": "Whether to plot along batch size or sequence length. Defaults to sequence length."},
43
44
45
46
47
    )
    is_time: bool = field(
        default=False,
        metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."},
    )
48
    no_log_scale: bool = field(
Lysandre's avatar
Lysandre committed
49
50
        default=False,
        metadata={"help": "Disable logarithmic scale when plotting"},
51
    )
52
53
54
55
56
57
58
    is_train: bool = field(
        default=False,
        metadata={
            "help": "Whether the csv file has training results or inference results. Defaults to inference results."
        },
    )
    figure_png_file: Optional[str] = field(
Lysandre's avatar
Lysandre committed
59
60
        default=None,
        metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."},
61
    )
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
    short_model_names: Optional[List[str]] = list_field(
        default=None, metadata={"help": "List of model names that are used instead of the ones in the csv file."}
    )


def can_convert_to_int(string):
    try:
        int(string)
        return True
    except ValueError:
        return False


def can_convert_to_float(string):
    try:
        float(string)
        return True
    except ValueError:
        return False
81
82
83
84
85
86
87
88
89
90
91
92
93


class Plot:
    def __init__(self, args):
        self.args = args
        self.result_dict = defaultdict(lambda: dict(bsz=[], seq_len=[], result={}))

        with open(self.args.csv_file, newline="") as csv_file:
            reader = csv.DictReader(csv_file)
            for row in reader:
                model_name = row["model"]
                self.result_dict[model_name]["bsz"].append(int(row["batch_size"]))
                self.result_dict[model_name]["seq_len"].append(int(row["sequence_length"]))
94
95
96
97
98
99
100
101
102
103
                if can_convert_to_int(row["result"]):
                    # value is not None
                    self.result_dict[model_name]["result"][
                        (int(row["batch_size"]), int(row["sequence_length"]))
                    ] = int(row["result"])
                elif can_convert_to_float(row["result"]):
                    # value is not None
                    self.result_dict[model_name]["result"][
                        (int(row["batch_size"]), int(row["sequence_length"]))
                    ] = float(row["result"])
104
105
106
107
108
109

    def plot(self):
        fig, ax = plt.subplots()
        title_str = "Time usage" if self.args.is_time else "Memory usage"
        title_str = title_str + " for training" if self.args.is_train else title_str + " for inference"

110
111
112
113
114
115
116
117
        if not self.args.no_log_scale:
            # set logarithm scales
            ax.set_xscale("log")
            ax.set_yscale("log")

        for axis in [ax.xaxis, ax.yaxis]:
            axis.set_major_formatter(ScalarFormatter())

118
        for model_name_idx, model_name in enumerate(self.result_dict.keys()):
119
120
121
122
123
124
125
126
            batch_sizes = sorted(list(set(self.result_dict[model_name]["bsz"])))
            sequence_lengths = sorted(list(set(self.result_dict[model_name]["seq_len"])))
            results = self.result_dict[model_name]["result"]

            (x_axis_array, inner_loop_array) = (
                (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes)
            )

127
128
129
130
            label_model_name = (
                model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx]
            )

131
132
            for inner_loop_value in inner_loop_array:
                if self.args.plot_along_batch:
133
134
                    y_axis_array = np.asarray(
                        [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results],
135
                        dtype=int,
136
                    )
137
                else:
138
139
140
141
                    y_axis_array = np.asarray(
                        [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results],
                        dtype=np.float32,
                    )
142
143

                (x_axis_label, inner_loop_label) = (
144
                    ("batch_size", "len") if self.args.plot_along_batch else ("in #tokens", "bsz")
145
146
                )

147
                x_axis_array = np.asarray(x_axis_array, int)[: len(y_axis_array)]
148
149
150
                plt.scatter(
                    x_axis_array, y_axis_array, label=f"{label_model_name} - {inner_loop_label}: {inner_loop_value}"
                )
151
152
                plt.plot(x_axis_array, y_axis_array, "--")

153
            title_str += f" {label_model_name} vs."
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178

        title_str = title_str[:-4]
        y_axis_label = "Time in s" if self.args.is_time else "Memory in MB"

        # plot
        plt.title(title_str)
        plt.xlabel(x_axis_label)
        plt.ylabel(y_axis_label)
        plt.legend()

        if self.args.figure_png_file is not None:
            plt.savefig(self.args.figure_png_file)
        else:
            plt.show()


def main():
    parser = HfArgumentParser(PlotArguments)
    plot_args = parser.parse_args_into_dataclasses()[0]
    plot = Plot(args=plot_args)
    plot.plot()


if __name__ == "__main__":
    main()