test_image_processing_levit.py 7.72 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

import numpy as np

from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available

24
25
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin
from ...test_image_processing_common import prepare_image_inputs
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46


if is_torch_available():
    import torch

if is_vision_available():
    from PIL import Image

    from transformers import LevitFeatureExtractor


class LevitFeatureExtractionTester(unittest.TestCase):
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        image_size=18,
        min_resolution=30,
        max_resolution=400,
        do_resize=True,
amyeroberts's avatar
amyeroberts committed
47
        size=None,
48
        do_center_crop=True,
amyeroberts's avatar
amyeroberts committed
49
        crop_size=None,
50
51
52
53
        do_normalize=True,
        image_mean=[0.5, 0.5, 0.5],
        image_std=[0.5, 0.5, 0.5],
    ):
amyeroberts's avatar
amyeroberts committed
54
55
        size = size if size is not None else {"shortest_edge": 18}
        crop_size = crop_size if crop_size is not None else {"height": 18, "width": 18}
56
57
58
59
60
61
62
63
64
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.image_size = image_size
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.do_resize = do_resize
        self.size = size
        self.do_center_crop = do_center_crop
amyeroberts's avatar
amyeroberts committed
65
        self.crop_size = crop_size
66
67
68
69
70
71
72
73
74
75
76
77
        self.do_normalize = do_normalize
        self.image_mean = image_mean
        self.image_std = image_std

    def prepare_feat_extract_dict(self):
        return {
            "image_mean": self.image_mean,
            "image_std": self.image_std,
            "do_normalize": self.do_normalize,
            "do_resize": self.do_resize,
            "do_center_crop": self.do_center_crop,
            "size": self.size,
amyeroberts's avatar
amyeroberts committed
78
            "crop_size": self.crop_size,
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
        }


@require_torch
@require_vision
class LevitFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.TestCase):

    feature_extraction_class = LevitFeatureExtractor if is_vision_available() else None

    def setUp(self):
        self.feature_extract_tester = LevitFeatureExtractionTester(self)

    @property
    def feat_extract_dict(self):
        return self.feature_extract_tester.prepare_feat_extract_dict()

    def test_feat_extract_properties(self):
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        self.assertTrue(hasattr(feature_extractor, "image_mean"))
        self.assertTrue(hasattr(feature_extractor, "image_std"))
        self.assertTrue(hasattr(feature_extractor, "do_normalize"))
        self.assertTrue(hasattr(feature_extractor, "do_resize"))
        self.assertTrue(hasattr(feature_extractor, "do_center_crop"))
        self.assertTrue(hasattr(feature_extractor, "size"))

104
105
106
107
108
109
110
111
112
    def test_feat_extract_from_dict_with_kwargs(self):
        feature_extractor = self.feature_extraction_class.from_dict(self.feat_extract_dict)
        self.assertEqual(feature_extractor.size, {"shortest_edge": 18})
        self.assertEqual(feature_extractor.crop_size, {"height": 18, "width": 18})

        feature_extractor = self.feature_extraction_class.from_dict(self.feat_extract_dict, size=42, crop_size=84)
        self.assertEqual(feature_extractor.size, {"shortest_edge": 42})
        self.assertEqual(feature_extractor.crop_size, {"height": 84, "width": 84})

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
    def test_batch_feature(self):
        pass

    def test_call_pil(self):
        # Initialize feature_extractor
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        # create random PIL images
        image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False)
        for image in image_inputs:
            self.assertIsInstance(image, Image.Image)

        # Test not batched input
        encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values
        self.assertEqual(
            encoded_images.shape,
            (
                1,
                self.feature_extract_tester.num_channels,
amyeroberts's avatar
amyeroberts committed
131
132
                self.feature_extract_tester.crop_size["height"],
                self.feature_extract_tester.crop_size["width"],
133
134
135
136
137
138
139
140
141
142
            ),
        )

        # Test batched
        encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values
        self.assertEqual(
            encoded_images.shape,
            (
                self.feature_extract_tester.batch_size,
                self.feature_extract_tester.num_channels,
amyeroberts's avatar
amyeroberts committed
143
144
                self.feature_extract_tester.crop_size["height"],
                self.feature_extract_tester.crop_size["width"],
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
            ),
        )

    def test_call_numpy(self):
        # Initialize feature_extractor
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        # create random numpy tensors
        image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, numpify=True)
        for image in image_inputs:
            self.assertIsInstance(image, np.ndarray)

        # Test not batched input
        encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values
        self.assertEqual(
            encoded_images.shape,
            (
                1,
                self.feature_extract_tester.num_channels,
amyeroberts's avatar
amyeroberts committed
163
164
                self.feature_extract_tester.crop_size["height"],
                self.feature_extract_tester.crop_size["width"],
165
166
167
168
169
170
171
172
173
174
            ),
        )

        # Test batched
        encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values
        self.assertEqual(
            encoded_images.shape,
            (
                self.feature_extract_tester.batch_size,
                self.feature_extract_tester.num_channels,
amyeroberts's avatar
amyeroberts committed
175
176
                self.feature_extract_tester.crop_size["height"],
                self.feature_extract_tester.crop_size["width"],
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
            ),
        )

    def test_call_pytorch(self):
        # Initialize feature_extractor
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        # create random PyTorch tensors
        image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, torchify=True)
        for image in image_inputs:
            self.assertIsInstance(image, torch.Tensor)

        # Test not batched input
        encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values
        self.assertEqual(
            encoded_images.shape,
            (
                1,
                self.feature_extract_tester.num_channels,
amyeroberts's avatar
amyeroberts committed
195
196
                self.feature_extract_tester.crop_size["height"],
                self.feature_extract_tester.crop_size["width"],
197
198
199
200
201
202
203
204
205
206
            ),
        )

        # Test batched
        encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values
        self.assertEqual(
            encoded_images.shape,
            (
                self.feature_extract_tester.batch_size,
                self.feature_extract_tester.num_channels,
amyeroberts's avatar
amyeroberts committed
207
208
                self.feature_extract_tester.crop_size["height"],
                self.feature_extract_tester.crop_size["width"],
209
210
            ),
        )